There is a constant pressure in industry to move away from platinum group metals (PGM) and achieve more environmentally friendly and sustainable production processes in the future. Recently developed Mn-based catalysts offer an interesting opportunity to complement established catalysts based on Ru. In this article, recent achievements in the field are highlighted and recent achievements in the collaboration of Solvias AG with the group of Prof.
View Article and Find Full Text PDFThe design, synthesis, commercialization and application of air-stable Ni(II)/Josiphos complexes has been realized in a collaboration between Solvias and ICBMS (University Lyon 1). The Ni-complexes are utilized as versatile precatalysts for diverse cross-coupling reactions. Apart from being active in established C-C and C-N couplings at low catalyst loadings, the novel Ni-precatalysts enabled the development of the challenging monoarylation of ammonia, ammonia surrogates and even alkylammonium chlorides with aryl carbamates.
View Article and Find Full Text PDFThe direct enantioselective copper hydride (CuH)-catalyzed synthesis of β-chiral amides from α,β-unsaturated carboxylic acids and secondary amines under mild reaction conditions is reported. The method utilizes readily accessible carboxylic acids and tolerates a variety of functional groups in the β-position including several heteroarenes. A subsequent iridium-catalyzed reduction to γ-chiral amines can be performed in the same flask without purification of the intermediate amides.
View Article and Find Full Text PDFBy taking inspiration from the fascinating biosynthetic machinery that creates aromatic polyketides, our group investigates analogous reactions catalyzed by small molecules. We are particularly captivated by the prospects of intramolecular aldol condensation reactions to generate different rotationally restricted aromatic compounds. In a first project of our independent research group, a highly stereoselective amine catalyzed synthesis of axially chiral biaryls, tertiary aromatic amides and oligo-1,2-naphthylenes has been developed.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2018
A strategy for the remote central-to-axial chirality conversion by simultaneous planarization of an encoding and a transient stereocenter is presented. Based on a diastereoselective double addition of a chiral 1,5-bifunctional organomagnesium alkoxide reagent to a broad range of aryl ester substrates, axially chiral biaryls are directly obtained upon in situ reduction. Various structurally distinct atropisomeric biaryl silanes that serve as valuable chiral biaryl anion surrogates are accessible in one step with e.
View Article and Find Full Text PDFWhile aromatic hydrocarbons are ubiquitous in organic chemistry, they are typically not associated with chirality and stereoisomerism. Due to the planarity and symmetry of simple arenes, methods to assemble aromatic rings are not routinely considered for the stereoselective synthesis of chiral compounds. The aim of this tutorial review is to contrast this common perception with the counterintuitive circumstance that stereoselective arene formation offers a means to stereoselectively prepare an exceptional range of chiral aromatic structures.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2015
A direct transformation of carboxylic acid esters into arenes with 1,5-bifunctional organomagnesium reagents is described. This efficient and practical method enables the one-step defunctionalization of various carboxylic acid esters to prepare benzene, anthracene, tetracene, and pentacene derivatives. A double nucleophilic addition of the 1,5-organodimagnesium reagent to the ester is followed by an immediate 1,4-elimination reaction that leads to the direct [5+1] formation of a new aromatic ring.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
May 2014
Axially chiral compounds are of significant importance in modern synthetic chemistry and particularly valuable in drug discovery and development. Nonetheless, current approaches for the preparation of pure atropisomers often prove tedious. We demonstrate here a synthetic method that efficiently transfers the stereochemical information of a secondary amine organocatalyst into the axial chirality of tri-ortho-substituted biaryls.
View Article and Find Full Text PDF