Importance: The development of artificial intelligence (AI)-based melanoma classifiers typically calls for large, centralized datasets, requiring hospitals to give away their patient data, which raises serious privacy concerns. To address this concern, decentralized federated learning has been proposed, where classifier development is distributed across hospitals.
Objective: To investigate whether a more privacy-preserving federated learning approach can achieve comparable diagnostic performance to a classical centralized (ie, single-model) and ensemble learning approach for AI-based melanoma diagnostics.
Background: Image-based cancer classifiers suffer from a variety of problems which negatively affect their performance. For example, variation in image brightness or different cameras can already suffice to diminish performance. Ensemble solutions, where multiple model predictions are combined into one, can improve these problems.
View Article and Find Full Text PDFBackground: Deep neural networks are showing impressive results in different medical image classification tasks. However, for real-world applications, there is a need to estimate the network's uncertainty together with its prediction.
Objective: In this review, we investigate in what form uncertainty estimation has been applied to the task of medical image classification.
Background: Due to their ability to solve complex problems, deep neural networks (DNNs) are becoming increasingly popular in medical applications. However, decision-making by such algorithms is essentially a black-box process that renders it difficult for physicians to judge whether the decisions are reliable. The use of explainable artificial intelligence (XAI) is often suggested as a solution to this problem.
View Article and Find Full Text PDFBackground: Over the past decade, the development of molecular high-throughput methods (omics) increased rapidly and provided new insights for cancer research. In parallel, deep learning approaches revealed the enormous potential for medical image analysis, especially in digital pathology. Combining image and omics data with deep learning tools may enable the discovery of new cancer biomarkers and a more precise prediction of patient prognosis.
View Article and Find Full Text PDFBackground: Multiple studies have compared the performance of artificial intelligence (AI)-based models for automated skin cancer classification to human experts, thus setting the cornerstone for a successful translation of AI-based tools into clinicopathological practice.
Objective: The objective of the study was to systematically analyse the current state of research on reader studies involving melanoma and to assess their potential clinical relevance by evaluating three main aspects: test set characteristics (holdout/out-of-distribution data set, composition), test setting (experimental/clinical, inclusion of metadata) and representativeness of participating clinicians.
Methods: PubMed, Medline and ScienceDirect were screened for peer-reviewed studies published between 2017 and 2021 and dealing with AI-based skin cancer classification involving melanoma.
Background: Gastrointestinal cancers account for approximately 20% of all cancer diagnoses and are responsible for 22.5% of cancer deaths worldwide. Artificial intelligence-based diagnostic support systems, in particular convolutional neural network (CNN)-based image analysis tools, have shown great potential in medical computer vision.
View Article and Find Full Text PDFBackground: One prominent application for deep learning-based classifiers is skin cancer classification on dermoscopic images. However, classifier evaluation is often limited to holdout data which can mask common shortcomings such as susceptibility to confounding factors. To increase clinical applicability, it is necessary to thoroughly evaluate such classifiers on out-of-distribution (OOD) data.
View Article and Find Full Text PDFAim: Sentinel lymph node status is a central prognostic factor for melanomas. However, the surgical excision involves some risks for affected patients. In this study, we therefore aimed to develop a digital biomarker that can predict lymph node metastasis non-invasively from digitised H&E slides of primary melanoma tumours.
View Article and Find Full Text PDFBackground: Recent years have been witnessing a substantial improvement in the accuracy of skin cancer classification using convolutional neural networks (CNNs). CNNs perform on par with or better than dermatologists with respect to the classification tasks of single images. However, in clinical practice, dermatologists also use other patient data beyond the visual aspects present in a digitized image, further increasing their diagnostic accuracy.
View Article and Find Full Text PDFBackground: Clinicians and pathologists traditionally use patient data in addition to clinical examination to support their diagnoses.
Objectives: We investigated whether a combination of histologic whole slides image (WSI) analysis based on convolutional neural networks (CNNs) and commonly available patient data (age, sex and anatomical site of the lesion) in a binary melanoma/nevus classification task could increase the performance compared with CNNs alone.
Methods: We used 431 WSIs from two different laboratories and analysed the performance of classifiers that used the image or patient data individually or three common fusion techniques.
Background: Studies have shown that artificial intelligence achieves similar or better performance than dermatologists in specific dermoscopic image classification tasks. However, artificial intelligence is susceptible to the influence of confounding factors within images (eg, skin markings), which can lead to false diagnoses of cancerous skin lesions. Image segmentation can remove lesion-adjacent confounding factors but greatly change the image representation.
View Article and Find Full Text PDFObjective: To develop a new digital biomarker based on the analysis of primary tumour tissue by a convolutional neural network (CNN) to predict lymph node metastasis (LNM) in a cohort matched for already established risk factors.
Patients And Methods: Haematoxylin and eosin (H&E) stained primary tumour slides from 218 patients (102 N+; 116 N0), matched for Gleason score, tumour size, venous invasion, perineural invasion and age, who underwent radical prostatectomy were selected to train a CNN and evaluate its ability to predict LN status.
Results: With 10 models trained with the same data, a mean area under the receiver operating characteristic curve (AUROC) of 0.
Background: A basic requirement for artificial intelligence (AI)-based image analysis systems, which are to be integrated into clinical practice, is a high robustness. Minor changes in how those images are acquired, for example, during routine skin cancer screening, should not change the diagnosis of such assistance systems.
Objective: To quantify to what extent minor image perturbations affect the convolutional neural network (CNN)-mediated skin lesion classification and to evaluate three possible solutions for this problem (additional data augmentation, test-time augmentation, anti-aliasing).
Background: Early detection of melanoma can be lifesaving but this remains a challenge. Recent diagnostic studies have revealed the superiority of artificial intelligence (AI) in classifying dermoscopic images of melanoma and nevi, concluding that these algorithms should assist a dermatologist's diagnoses.
Objective: The aim of this study was to investigate whether AI support improves the accuracy and overall diagnostic performance of dermatologists in the dichotomous image-based discrimination between melanoma and nevus.
Malignant melanoma is the skin tumor that causes most deaths in Germany. At an early stage, melanoma is well treatable, so early detection is essential. However, the skin cancer screening program in Germany has been criticized because although melanomas have been diagnosed more frequently since introduction of the program, the mortality from malignant melanoma has not decreased.
View Article and Find Full Text PDFArtificial intelligence (AI) has shown promise in numerous experimental studies, particularly in skin cancer diagnostics. Translation of these findings into the clinic is the logical next step. This translation can only be successful if patients' concerns and questions are addressed suitably.
View Article and Find Full Text PDFRecent studies have shown that deep learning is capable of classifying dermatoscopic images at least as well as dermatologists. However, many studies in skin cancer classification utilize non-biopsy-verified training images. This imperfect ground truth introduces a systematic error, but the effects on classifier performance are currently unknown.
View Article and Find Full Text PDF