Abdominal aortic aneurysm disease is the local enlargement of the aorta, typically in the infrarenal section, causing up to 200,000 deaths/year. In vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We used a method that combines 4D ultrasound and direct deformation estimation to compute in vivo 3D Green-Lagrange strain in murine angiotensin II-induced dissecting aortic aneurysms, a commonly used mouse model.
View Article and Find Full Text PDFAbdominal aortic aneurysms are a degenerative disease of the aorta associated with high mortality. To date, in vivo information to characterize the individual elastic properties of the aneurysm wall in terms of rupture risk is lacking. We have used time-resolved 3D ultrasound strain imaging to calculate spatially resolved in-plane strain distributions characterized by mean and local maximum strains, as well as indices of local variations in strains.
View Article and Find Full Text PDFObjective: The rupture of abdominal aortic aneurysms (AAAs) is associated with high mortality despite surgical developments. The determination of aneurysm diameter allows for follow up of aneurysm growth but fails in precisely predicting aneurysm rupture. In this study, time resolved three dimensional ultrasound (4D ultrasound) based wall motion indices (WMIs) are investigated to see if they are capable of distinguishing between uneven affected regions of the aneurysm wall.
View Article and Find Full Text PDF