Publications by authors named "Achilles J Pappano"

Evidence is accumulating to support a potentially important role for purinergic (P2X) receptors in heart failure (HF). We tested the hypothesis that a hydrolysis-resistant nucleotide analog with agonist activity at myocardial P2X receptors (P2XRs) improves the systolic HF phenotype in mouse and dog models. We developed a hydrolysis-resistant adenosine monophosphate derivative, (1'S,2R,3S,4'R,5'S)-4-(6-amino-2-chloro-9H-purin-9-yl)-1-[phosphoryloxymethyl] bicycle[3.

View Article and Find Full Text PDF

Microtubules provide a chemical signaling function as well as structural support for heart cells. Microtubules modulate autonomic signaling in the heart, and their disruption by colchicine unmasks muscarinic inhibition of Ca (ICa) current. In this study, we compare the actions of the estrogen metabolite, 2-methoxyestradiol (2-ME), with those of colchicine on microtubule stability and chemical signal function in guinea pig-isolated ventricular myocytes.

View Article and Find Full Text PDF

P2X receptors, activated by extracellular ATP, may be important in regulating cardiac function. The objective of the present study was to characterize the electrophysiologic actions of P2X4 receptors in cardiac myocytes and to determine whether they are involved in mediating the effect of extracellular ATP. Membrane currents under voltage clamp were determined in myocytes from both wild-type (WT) and P2X4 receptor-overexpressing transgenic (TG) mice.

View Article and Find Full Text PDF

We recently showed that colchicine treatment of rat ventricular myocytes increases the L-type Ca2+ current (I(Ca)) and intracellular Ca2+ concentration ([Ca2+](i)) transients and interferes with adrenergic signaling. These actions were ascribed to adenylyl cyclase (AC) stimulation after G(s) activation by alpha,beta-tubulin. Colchicine depolymerizes microtubules into alpha,beta-tubulin dimers.

View Article and Find Full Text PDF

Does cGMP, via protein kinase G, inhibit cAMP-stimulated Ca(2+) current (I(Ca(L))) in mammalian ventricular myocytes by phosphorylating the calcium channel at a site different from that acted on by cAMP or by dephosphorylating the calcium channel through phosphatase(s)? We tested these possibilities in guinea pig ventricular myocytes superfused with Tyrode's solution (35 degrees C) and dialyzed with adenosine 5'-O-(3-thiotriphosphate) ([ATPgammaS](pip)). ATPgammaS is a kinase substrate but thiophosphorylated proteins are not phosphatase substrates. With 5 mM [ATPgammaS](pip), I(Ca(L)) increased gradually over 20 to 25 min and then rapidly in the presence of 3-isobutyl-1-methylxanthine.

View Article and Find Full Text PDF