Publications by authors named "Achiel van Peer"

The aim of the presented retrospective analysis was to verify whether a previously proposed Janssen Biopharmaceutical Classification System (BCS)-like decision tree, based on preclinical bioavailability data of a solution and suspension formulation, would facilitate informed decision making on the clinical formulation development strategy. In addition, the predictive value of (in vitro) selection criteria, such as solubility, human permeability, and/or a clinical dose number (Do), were evaluated, potentially reducing additional supporting formulation bioavailability studies in animals. The absolute ( F) and relative ( F) bioavailability of an oral solution and suspension, respectively, in rat or dog and the anticipated BCS classification were analyzed for 89 Janssen compounds with 28 of these having F and F in both rat and dog at doses around 10 and 5 mg/kg, respectively.

View Article and Find Full Text PDF

Orally administered drugs are subject to a number of barriers impacting bioavailability (F), causing challenges during drug and formulation development. Physiologically-based pharmacokinetic (PBPK) modelling can help during drug and formulation development by providing quantitative predictions through a systems approach. The performance of three available PBPK software packages (GI-Sim, Simcyp®, and GastroPlus™) were evaluated by comparing simulated and observed pharmacokinetic (PK) parameters.

View Article and Find Full Text PDF
Article Synopsis
  • - Three Physiologically Based Pharmacokinetic (PBPK) software packages (GI-Sim, Simcyp®, GastroPlus™) were assessed for predicting human drug absorption as part of the OrBiTo project, revealing issues with bioavailability predictions for various compounds.
  • - The models consistently underestimated oral bioavailability (F) for low-permeability and acidic compounds, indicating potential flaws in understanding intestinal absorption processes and solubility settings.
  • - High logP and poorly water-soluble compounds also had lower than expected bioavailability, pointing to the need for improved solubility models and more accurate input data, but caution was noted due to variability in available data used for predictions.
View Article and Find Full Text PDF

Predicting oral bioavailability (F) is of importance for estimating systemic exposure of orally administered drugs. Physiologically-based pharmacokinetic (PBPK) modelling and simulation have been applied extensively in biopharmaceutics recently. The Oral Biopharmaceutical Tools (OrBiTo) project (Innovative Medicines Initiative) aims to develop and improve upon biopharmaceutical tools, including PBPK absorption models.

View Article and Find Full Text PDF

Background And Objective: Although the measurement of cytochrome P450 (CYP) contributions in metabolism assays is straightforward, determination of actual in vivo contributions might be challenging. How representative are in vitro for in vivo CYP contributions? This article proposes an improved strategy for the determination of in vivo CYP enzyme-specific metabolic contributions, based on in vitro data, using an in vitro-in vivo extrapolation (IVIVE) approach. Approaches are exemplified using tramadol as model compound, and CYP2D6 and CYP3A4 as involved enzymes.

View Article and Find Full Text PDF

Regulatory interactions are an important part of the drug development and licensing process. A survey on the use of biopharmaceutical tools for regulatory purposes has been carried out within the industry community of the EU project OrBiTo within Innovative Medicines Initiative (IMI). The aim was to capture current practice and experience in using in vitro and in silico biopharmaceutics tools at various stages of development, what barriers exist or are perceived, and to understand the current gaps in regulatory biopharmaceutics.

View Article and Find Full Text PDF

Combined analyses from 2 open-label, phase-1 studies-the pharmacokinetic profile of tramadol and its metabolite (M1) following a single oral dose of tramadol extended release (ER) (25 to 100 mg) in children (7 to 11 years old; study 1: n = 37) and adolescents (12 to 17 years old; study 2: n = 38) with painful conditions-were historically compared with that of healthy adults following similar dosing. The dose-normalized area under the curve (DN AUC0-24h ) and maximum concentration (DN Cmax ) of tramadol and of M1 in children and in adolescents were lower than those in adults (children vs adults: tramadol, DN AUC0-24h 82.19%; DN Cmax 80.

View Article and Find Full Text PDF

This paper focuses on the retrospective evaluation of physiologically based pharmacokinetic (PBPK) techniques used to mechanistically predict clearance throughout pediatric life. An intravenous tramadol retrograde PBPK model was set up in Simcyp® using adult clearance values, qualified for CYP2D6, CYP3A4, CYP2B6, and renal contributions. Subsequently, the model was evaluated for mechanistic prediction of total, CYP2D6-related, and renal clearance predictions in very early life.

View Article and Find Full Text PDF

In the present work we sought to gain a mechanistic understanding of the physicochemical properties that influence the transport of unbound drug across the blood-brain barrier (BBB) as well as the intra- and extracellular drug exposure in the brain. Interpretable molecular descriptors that significantly contribute to the three key neuropharmacokinetic properties related to BBB drug transport (Kp,uu,brain), intracellular accumulation (Kp,uu,cell), and binding and distribution in the brain (Vu,brain) for a set of 40 compounds were identified using partial least-squares (PLS) analysis. The tailoring of drug properties for improved brain exposure includes decreasing the polarity and/or hydrogen bonding capacity.

View Article and Find Full Text PDF

Purpose: To predict the tramadol in vivo pharmacokinetics in adults by using in vitro metabolism data and an in vitro-in vivo extrapolation (IVIVE)-linked physiologically-based pharmacokinetic (PBPK) modeling and simulation approach (Simcyp®).

Methods: Tramadol metabolism data was gathered using metabolite formation in human liver microsomes (HLM) and recombinant enzyme systems (rCYP). Hepatic intrinsic clearance (CLintH) was (i) estimated from HLM corrected for specific CYP450 contributions from a chemical inhibition assay (model 1); (ii) obtained in rCYP and corrected for specific CYP450 contributions by study-specific intersystem extrapolation factor (ISEF) values (model 2); and (iii) scaled back from in vivo observed clearance values (model 3).

View Article and Find Full Text PDF

This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in today's knowledge in order to stimulate further work on refining the existing in vivo models and demonstrate their usefulness in drug formulation and product performance testing.

View Article and Find Full Text PDF

Purpose: The current project was undertaken with the aim to propose and test an in-depth integrative analysis of neuropharmacokinetic (neuroPK) properties of new chemical entities (NCEs), thereby optimizing the routine of evaluation and selection of novel neurotherapeutics.

Methods: Forty compounds covering a wide range of physicochemical properties and various CNS targets were investigated. The combinatory mapping approach was used for the assessment of the extent of blood-brain and cellular barriers transport via estimation of unbound-compound brain (Kp,uu,brain) and cell (Kp,uu,cell) partitioning coefficients.

View Article and Find Full Text PDF

From the year 2000 onwards, physiologically based pharmacokinetic (PBPK) models in the field of drug research and development have been increasingly used. This proliferation of applications was prompted by the availability of new data and computational approaches required for the parameterization of PBPK models, as well as the availability of commercial software platforms. PBPK approaches have been used to predict drug pharmacokinetics in humans based on nonclinical data, the potential for drug-drug interactions and the expected changes in the pharmacokinetics in case of different physiopathological conditions.

View Article and Find Full Text PDF

Purpose: A case example is presented in which the physiologically based modeling approach has been used to model the absorption of a lipophilic BCS Class II compound predominantly metabolized by CYP3A4, and to assess the interplay of absorption related parameters with the drug-drug interaction (DDI) potential.

Methods: The PBPK model was built in the rat using Gastroplus® to study the absorption characteristics of the compound. Subsequently relevant model parameters were used to predict the non-linear human PK observed during first-in-human study after optimizing the absorption model for colonic absorption, bile micelle solubilization and unbound fraction in gut enterocytes (fu(gut)) using SIMCYP® simulator.

View Article and Find Full Text PDF

Background: It is imperative that new drugs demonstrate adequate pharmacokinetic properties, allowing an optimal safety margin and convenient dosing regimens in clinical practice, which then lead to better patient compliance. Such pharmacokinetic properties include suitable peak (maximum) plasma drug concentration (C(max)), area under the plasma concentration-time curve (AUC) and a suitable half-life (t(½)). The C(max) and t(½) following oral drug administration are functions of the oral clearance (CL/F) and apparent volume of distribution during the terminal phase by the oral route (V(z)/F), each of which may be predicted and combined to estimate C(max) and t(½).

View Article and Find Full Text PDF

In 2008, the European Agency for the Evaluation of Medicinal Products released a draft guidance on the investigation of bioequivalence for immediate release dosage forms with systemic action to replace the former guidance of a decade ago. Revisions of the regulatory guidance are based upon many questions over the past years and sometimes continuing scientific discussions on the use of the most suitable statistical analysis methods and study designs, particularly for drugs and drug products with high within-subject variability. Although high within-subject variability is usually associated with a coefficient of variation of 30% or more, new approaches are available in the literature to allow a gradual increase and a levelling off of the bioequivalence limits to some maximum wider values (e.

View Article and Find Full Text PDF

Therapeutic proteins are a diverse class of drugs consisting of naturally occurring or modified proteins, and due to their size and physico-chemical properties, they can pose challenges for the pharmacokinetic and pharmacodynamic studies. Physiologically-based pharmacokinetics (PBPK) modelling has been effective for early in silico prediction of pharmacokinetic properties of new drugs. The aim of the present workshop was to discuss the feasibility of PBPK modelling of macromolecules.

View Article and Find Full Text PDF

Purpose: A novel bioequivalence limit is proposed taking into account the therapeutic window.

Methods: The therapeutic range is introduced as the ratios maximum tolerated dose/therapeutic dose (MTD/D) and the therapeutic dose/lowest effective dose. The performance of the new acceptance range was compared with the methods of Schuirmann and Karalis.

View Article and Find Full Text PDF

This is a summary report of the EUFEPS & COST B25 conference on Bioavailability and Bioequivalence which focused on physiological factors and variability. This conference was held at The Royal Olympic Hotel in the centre of Athens (Greece) during the 1-2 of October in 2007. The issues discussed in the conference involved physiological factors affecting drug absorption, the role of pre-systemic effects on bioavailability (BA), the impact of variability in bioequivalence (BE) studies, and a final closing panel session on unresolved issues in BA/BE regulations.

View Article and Find Full Text PDF

Background: Oral clearance (CL/F) is an important pharmacokinetic parameter and plays an important role in the selection of a safe and tolerable dose for first-in-human studies. Throughout the pharmaceutical industry, many drugs are administered via the oral route; however, there are only a handful of published scaling studies for the prediction of oral pharmacokinetic parameters.

Methods: We evaluated the predictive performances of four different allometric approaches -- simple allometry (SA), the rule of exponents, the unbound CL/F approach, and the unbound fraction corrected intercept method (FCIM) -- for the prediction of human CL/F and the oral area under the plasma concentration-time curve (AUC).

View Article and Find Full Text PDF

To help identify the role of modelling and simulation in the development of anti-cancer agents, their main advantages and the obstacles to their rational use, an expert meeting was organized by COST B15. This manuscript presents a synthesis of views expressed at that meeting and indicates future directions. The manuscript also shows some examples where modelling and simulation have proven to be of relevant value in the drug development process for anti-cancer agents.

View Article and Find Full Text PDF

Galantamine is a reversible, competitive inhibitor of acetylcholinesterase and an allosteric modulator of nicotinic acetylcholine receptors. It is cleared by renal and hepatic mechanisms, including metabolism by the CYP 450 2D6 and 3A4 isoenzymes. The authors estimated the population pharmacokinetics of galantamine using nonlinear mixed-effects modeling as implemented in NONMEM software.

View Article and Find Full Text PDF

The aim of this study was to compare the pharmacokinetics of galantamine in healthy Japanese and Caucasian subjects and assess the safety and tolerability of galantamine in both ethnic groups. Parallel groups of healthy Japanese (n = 13; 6 males and 7 females)and Caucasian (n = 12; 6 males and 6 females) subjects matched for weight and age received single oral doses of galantamine 4 mg, or galantamine 8 mg, or placebo in a double-blind, three-way crossover trial according to a randomized dosing schedule. Concentrations of galantamine and norgalantamine were determined in plasma and urine samples taken up to 48 and 24 hours after dosing, respectively.

View Article and Find Full Text PDF