There is an unmet need for artificial tissue to address current limitations with donor organs and problems with donor site morbidity. Despite the success with sophisticated tissue engineering endeavours, which employ cells as building blocks, they are limited to dedicated labs suitable for cell culture, with associated high costs and long tissue maturation times before available for clinical use. Direct 3D printing presents rapid, bespoke, acellular solutions for skull and bone repair or replacement, and can potentially address the need for elastic tissue, which is a major constituent of smooth muscle, cartilage, ligaments and connective tissue that support organs.
View Article and Find Full Text PDFReconstructive urologists are constantly facing diverse and complex pathologies that require structural and functional restoration of urinary organs. There is always a demand for a biocompatible material to repair or substitute the urinary tract instead of using patient's autologous tissues with its associated morbidity. Biomimetic approaches are tissue-engineering tactics aiming to tailor the material physical and biological properties to behave physiologically similar to the urinary system.
View Article and Find Full Text PDFNew developments in accelerating wound healing can have immense beneficial socioeconomic impact. The wound healing process is a highly orchestrated series of mechanisms where a multitude of cells and biological cascades are involved. The skin battery and current of injury mechanisms have become topics of interest for their influence in chronic wounds.
View Article and Find Full Text PDFHollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs.
View Article and Find Full Text PDFOff the shelf scaffolds for replacing ultra-small diameter vascular grafts are valuable for reconstruction of diseased or damaged vessels. The limitations for such grafts include optimal handling with ready availability of varied lengths of grafts, graft patency with the ability to replace the function of active cellular mechanisms and adequate mechanical properties to maintain physicochemical function. We used a well-established, solvent casting method for potential tissue replacement scaffold fabrication with incorporated bioactive molecules, which we have previously explored to confer haemocompatibility.
View Article and Find Full Text PDFThere is a need for biomimetic materials for use in blood-contacting devices. Blood contacting surfaces maintain their patency through physico-chemical properties of a functional endothelium. A poly(carbonate-urea) urethane (PCU) is used as a base material to examine the feasibility of L-Arginine methyl ester (L-AME) functionalized material for use in implants and coatings.
View Article and Find Full Text PDFTher Adv Cardiovasc Dis
August 2016
Nitric oxide (NO) has a significant role in modulating the respiratory system and is being exploited therapeutically. Neonatal respiratory failure can affect around 2% of all live births and is responsible for over one third of all neonatal mortality. Current treatment method with inhaled NO (iNO) has demonstrated great benefits to patients with persistent pulmonary hypertension, bronchopulmonary dysplasia and neonatal respiratory distress syndrome.
View Article and Find Full Text PDFNitric Oxide, synthesized from L-arginine by the nitric oxide synthases, has a complex role within the human body. It contributes to almost every physiological system and has been found to be both protective and toxic in disease states. An aging population faces an increasing incidence of neurodegenerative disease and the pathological action of nitric oxide in Alzheimer's and Parkinson's diseases may be important therapeutic targets for the future.
View Article and Find Full Text PDFBackground: There is a great potential for nitric oxide (NO) eluting biomaterials in biomedical applications. These include the development of cardiovascular implants, wound healing products, or applications in cancer and respiratory therapy. While the potential of these materials as a therapy is becoming clearer, the real-time monitoring of NO is not easy and the success in the development of such materials depends on the accurate quantification of NO release.
View Article and Find Full Text PDFChildren suffer from damaged or loss of hollow organs i.e. trachea, oesophagus or arteries from birth defects or diseases.
View Article and Find Full Text PDFAn unmet need exists for the development of next-generation multifunctional nanocomposite materials for biomedical applications, particularly in the field of cardiovascular regenerative biology. Herein, we describe the preparation and characterization of a novel polyhedral oligomeric silsesquioxane poly(carbonate-urea) urethane (POSS-PCU) nanocomposite polymer with covalently attached anti-CD34 antibodies to enhance capture of circulating endothelial progenitor cells (EPC). This material may be used as a new coating for bare metal stents used after balloon angioplasty to improve re-endothelialization.
View Article and Find Full Text PDFCardiovascular implants must resist thrombosis and intimal hyperplasia, but they are prone to such patency limiting conditions during graft implantation and prior to endothelialisation. Nitric oxide (NO) released from the endothelium has a complex protective role in the cardiovascular system, and this study has addressed: (1) in situ NO release profiles from S-nitrosothiols ((S-Nitroso-N-acetylpenicillamine (SNAP) and (S-Nitrosoglutathione (GSNO)) incorporated into polyhedral oligomeric silsesquioxanepoly(carbonate-urea)urethane (POSS-PCU) coronary artery bypass grafts (CABG) in a physiological pulsatile flow, and (2) the determination of their interaction with endothelial progenitor cells (EPCs), smooth muscle cells, platelets, whole blood kinetics. It was found that 1, 2, and 3 wt% SNAP/GSNO incorporated into POSS-PCU-CABG successfully eluted NO, but optimal elution was evident with 2 %-SNAP-POSS-PCU.
View Article and Find Full Text PDFContext: Congenital heart disease is a leading cause of death in the first year, with an incidence of 1.5 million worldwide. It can be treated with bypass surgery, but due to the limited availability of autologous grafts, there has been research into developing a completely tissue-engineered vascular graft.
View Article and Find Full Text PDFReplacement of irreversibly damaged organs due to chronic disease, with suitable tissue engineered implants is now a familiar area of interest to clinicians and multidisciplinary scientists. Ideal tissue engineering approaches require scaffolds to be tailor made to mimic physiological environments of interest with specific surface topographical and biological properties for optimal cell-material interactions. This study demonstrates a single-step procedure for inducing biomimicry in a novel nanocomposite base material scaffold, to re-create the extracellular matrix, which is required for stem cell integration and differentiation to mature cells.
View Article and Find Full Text PDFThe need for a valid replacement for autologous tissues in vascular surgery has led to the development of tissue-engineered vascular grafts (TEVGs). Currently, only three kinds of TEVG have been used in clinical trials: synthetic scaffold-based TEVGs, self-assembled grafts, and decellularized exogenous tissues. This review presents the current options in the construction of TEVG and the changes that have occurred in the design following the clinical experience while focusing on the potential for pediatric applications.
View Article and Find Full Text PDFPercutaneous coronary intervention (PCI) is used to treat blocked coronary arteries. Bare-metal stents (BMS) were first used in PCI but often necessitated repair procedures due to in-stent restenosis. Drug-eluting stents (DES) were developed to address this problem as the stent-incorporated anti-proliferative drugs prevented restenosis.
View Article and Find Full Text PDFIn an era of increased cardiovascular disease burden in the ageing population, there is great demand for devices that come in to contact with the blood such as heart valves, stents, and bypass grafts that offer life saving treatments. Nitric oxide (NO) elution from healthy endothelial tissue that lines the vessels maintains haemostasis throughout the vasculature. Surgical devices that release NO are desirable treatment options and N-diazeniumdiolates and S-nitrosothiols are recognized as preferred donor molecules.
View Article and Find Full Text PDFResearch groups are currently recognising a critical clinical need for innovative approaches to organ failure and agenesis. Allografting, autologous reconstruction and prosthetics are hampered with severe limitations. Pertinently, readily available 'laboratory-grown' organs and implants are becoming a reality.
View Article and Find Full Text PDFCardiovascular implants must resist thrombosis and intimal hyperplasia to maintain patency. These implants when in contact with blood face a challenge to oppose the natural coagulation process that becomes activated. Surface protein adsorption and their relevant 3D confirmation greatly determine the degree of blood compatibility.
View Article and Find Full Text PDFAim: This study aimed to live monitor the degree of endothelial progenitor cell (EPC) integration onto tissue-engineering scaffolds by conjugating relevant antibodies to quantum dots (QDs).
Materials & Methods: Biocompatible mercaptosuccinic acid-coated QDs were functionalized with two different antibodies to EPC (CD133 with QDs of 640 nm wavelength [λ] and later-stage mature EPCs; and von Willebrand factor with QDs of λ595 and λ555 nm) using conventional carbomide and N-hydroxysuccinimide chemistry. Biofunctionalization was characterized with Fourier-transform infrared spectroscopy.
J Biomed Mater Res A
September 2012
Cardiovascular implants must resist infection and thrombosis. A nanocomposite polymeric material [polyhedral-oligomeric-silsesquioxane-poly(carbonate-urea)urethane; POSS-PCU] demonstrates ideal properties for cardiovascular applications. Silver nanoparticles or nanosilver (NS) are recognized for efficient antibacterial properties.
View Article and Find Full Text PDFNO (nitric oxide) may protect the liver from IR (ischaemia/reperfusion) injury. RIPC (remote ischaemic preconditioning) also protects against liver IR injury; however, the molecular mediator(s) of RIPC are currently unknown. The aim of the present study was to assess the role of NO in hindlimb RIPC-induced protection against liver IR injury.
View Article and Find Full Text PDF