Publications by authors named "Acebal P"

Helicity and directionality control of scattered light by nanoparticles is an important task in different photonic fields. In this paper, we theoretically demonstrate that scattered light of lossy spherical nanoparticles excited by using two counter-propagating dephased plane waves with opposite helicity ±1 and the adequate selection of dephase and intensity shows a well defined helicity and a controllable scattering directivity. Numerical examples of Si nanospheres are studied showing their potential application to directional nanoantennas with a well defined helicity.

View Article and Find Full Text PDF

We theoretically analyze the methodology for obtaining vectorial three-dimensional bullets, concretely Airy-Gauss bullets. To do this, binary micro zonal plates (BZP) were designed in order to obtain different Airy-Gauss bullets with sub-diffraction main lobe width. Following the vectorial diffraction theory, among the electrical field, we extend the theory to the magnetic field, and thus we analyze several properties such as the Poynting vector and the energy of Airy-Gauss vectorial bullets generated by illuminating the designed BZP with a temporal Gaussian circular polarized pulses.

View Article and Find Full Text PDF

Focusing systems with high numerical aperture can be used to convert spin angular momentum into orbital angular momentum with efficiencies of 50%, while for low numerical apertures this conversion vanishes. In this paper, based on the properties of binary Fresnel zone plates, we propose a structure that is achieved by making an accurate selection of the width and the depth of the rings. This allows us to obtain a large increase in the spin to orbital angular momentum conversion of the resulting focusing fields, and it also has the special characteristic that the obtained conversion is higher for low numerical aperture structures, where standard focusing systems do not work.

View Article and Find Full Text PDF

A spatio-temporal analysis of non-degenerate two-wave mixing in a saturable absorber, such as bacteriorhodopsin (bR) film, is performed. To do this, a theoretical model describing the temporal variation of the intensities is developed by taking into account the dielectric constant as a function of bR population. A good agreement between theory and experimental measurements is obtained.

View Article and Find Full Text PDF

We analyze particle dynamics in an optical force field generated by helical tractor beams obtained by the interference of a cylindrical beam with a topological charge and a co-propagating temporally de-phased plane wave. We show that, for standard experimental conditions, it is possible to obtain analytical solutions for the trajectories of particles in such force field by using of some approximations. These solutions show that, in contrast to other tractor beams described before, the intensity becomes a key parameter for the control of particle trajectories.

View Article and Find Full Text PDF

We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane.

View Article and Find Full Text PDF

Time-delay of transmitted pulses with respect to the incident pulse in bacteriorhodopsin films has been studied without the use of a pump beam. Based on a modified saturable absorber model, analytical expressions of the transmitted pulse have been obtained. As a result, time delay, distortion and fractional delay have been analyzed for sinusoidal pulses with a low background.

View Article and Find Full Text PDF

We theoretically study the three-dimensional behavior of nanoparticles in an active optical conveyor. To do this, we solved the Langevin equation when the forces are generated by a focusing system at the near field. Analytical expressions for the optical forces generated by the optical conveyor were obtained by solving the Richards and Wolf vectorial diffraction integrals in an approximated form when a mask of two annular pupils is illuminated by a radially polarized Hermite-Gauss beam.

View Article and Find Full Text PDF

We present a complete electromagnetic study, which includes electric, magnetic, and Poynting vector fields of diffracted convergent spherical waves under all possible polarization states compatible with Maxwell's equations. Exit pupil boundary conditions for these polarizations were obtained by means of Hertz potentials. Using these boundary conditions, two-dimensional Luneburg diffraction integrals for the three components of electric and magnetic fields were formulated, and after some approximations, we showed that the complete electromagnetic description of the inhomogeneous polarization states of spherical waves is reduced to the knowledge of seven one-dimensional integrals.

View Article and Find Full Text PDF

The propagation of sinusoidal pulses in bacteriorhodopsin films has been theoretically analyzed using a complete study of the photoinduced processes that take into account all the physical parameters, the coupling of rate equations with the energy transfer equation and the temperature change during the experiment. The theoretical approach was compared to experimental data and a good concordance was observed. This theoretical treatment, can be widely applied, i.

View Article and Find Full Text PDF

We present a holographic system that can be used to manipulate the group velocity of light pulses. The proposed structure is based on the multiplexing of two sequential holographic volume gratings, one in transmission and the other in reflection geometry, where one of the recording beams must be the same for both structures. As in other systems such as grating induced transparency (GIT) or coupled-resonator-induced transparency (CRIT), by using the coupled wave theory it is shown that this holographic structure represents a classical analogue of the electromagnetically induced transparency (EIT).

View Article and Find Full Text PDF

A new model is developed to describe the orientational order of dense molecular systems under an applied external electric field as a function of the n-particle distribution functions of a system under no external perturbation. From an approximation of this expression, the effects of several variables on this orientational order, such as the microscopic properties of the oriented molecules (the molecular geometry and multipole moments) and the solvent or matrix properties, are studied. The theoretical predictions show that, for a correct description of the orientational order, quadrupole and octupole moments must be included, as they play an important role in the orientational order achieved, depending on the molecular geometry.

View Article and Find Full Text PDF

The recent results reported in reference 1 have produced an increased interest in explaining deviations from the ideal behavior of the energetic variation of the diffraction efficiency of holographic gratings. This ideal behavior occurs when uniform gratings are recorded, and the index modulation is proportional to the energetic exposure. As a result, a typical sin(2) curve is obtained reaching a maximum diffraction efficiency and saturation at or below this value.

View Article and Find Full Text PDF

We theoretically analyze Airy beams by solving the exact vectorial Helmholtz equation using boundary conditions at a diffraction aperture. As result, the diffracted beams are obtained in the whole space; thus, we demonstrate that the parabolic trajectories are larger than those previously reported, showing that the Airy beams start to form before the Fourier plane. We also demonstrate the possibility of using a new type of Airy beams (SAiry beams) with finite energy that can be generated at the focal plane of the lens due to diffraction by a circular aperture of a spherical wave modified by a cubic phase.

View Article and Find Full Text PDF

We rigorously analyze the optical singularities and power flux in the near-field region of the novel superlenses reported in [Science317, 927 (2007)] For this purpose, we derive near-field expressions and a general criterion to classify the optical singularities in the vacuum, which are valid when the (s- or p-polarized) electromagnetic fields are generated by any planar field distribution with Cartesian or azimuthal symmetry. Such general results are particularized to the superlenses [Science317, 927 (2007)], for which we identify a sequence of optical vortices and saddles that arise from evanescent-field interference. While the saddles are always located around the focal region, the vortex locations depend on the source field.

View Article and Find Full Text PDF

The aim of this work was to perform a complete study of the dynamic and steady-state photoinduced processes of thick bacteriorhodopsin (bR) films, taking into account all the physical parameters and the coupling of rate equations with the energy transfer equation. The theoretical approach was compared with experimental data, and good concordance was found between both sets of data. The theoretical approach shows that the values of the rate constants for solid bR films are about two or three orders of magnitude lower than those observed in solution.

View Article and Find Full Text PDF

A matrix method which relates the field and its derivative is presented for the study of wave propagation in any type of one-dimensional media. The transfer matrix is obtained from the canonical solutions of Helmholtz equations at normal incidence. The method is applied to different optical systems like a Fabry-Perot cavity formed by uniform fiber Bragg gratings, periodic dielectric structures and different quasi-periodic structures based on Fibonacci and Thue-Morse sequences of layers with constant and variable refractive index.

View Article and Find Full Text PDF

A method based in the application of Fixed Point Theorem (FPT) techniques to the solution of the 1D wave equation at normal incidence for materials that present a continuous (real or complex) dielectric constant is presented. As an example, the method is applied for the calculation of the electric field, reflection and transmission spectra in volume holographic gratings. It is shown that the solution obtained using this method agrees with the exact Mathieu solutions also obtained in this paper for volume holographic reflection gratings.

View Article and Find Full Text PDF

In this study we show six bidimensional chromophores designed for high Tg photorefractive polymers with a working wavelength in the near IR. The macroscopic optical properties of a poled polymer which contains the designed chromophores were expressed as a function of the microscopic properties of the chromophores, which were calculated using quantum mechanical methods. Later, the diffraction efficiency of a holographic recording and readout experiment was simulated using the Montemezzani equation for anisotropic materials.

View Article and Find Full Text PDF

A theoretical study of light-induced modulation of the dielectric permittivity in bacteriorhodopsin films has been done (including B--> M and B --> Q transitions). Analysis of dielectric permittivity modulation enables us to determine the fundamental limits of BR to be used in a holographic data storage system, together with the optimum experimental and material conditions. In order to carry out this analysis, the macroscopic dielectric permittivity was related to the microscopic polarizability of the three states of BR considered (B, M and Q).

View Article and Find Full Text PDF

In this paper we study the effect of the chromophores' beta tensor active components on the diffraction efficiency of a high T(g) photorefractive polymer. In particular, we study the two simplest structures with nonvanishing dipole moment, the one-dimension push-pull systems, and the Lambda-shaped chromophores. We have developed a model that relate the diffraction efficiency expression with experimental conditions and microscopic properties of the molecules used.

View Article and Find Full Text PDF

Three multiplexed holographic gratings were used to fabricate 3D photonic crystals without complete band gap using ultra-fine grain holographic emulsion as the storage material. Theoretical and experimental studies were carried out in order to characterize the crystals. Good agreement between theory and experimental results was obtained, showing that it is possible to obtain a band-pass filter for a fixed direction of illumination.

View Article and Find Full Text PDF

The holographic parameters of purple membrane-polyacrylamide films obtained from a mutant form of Halobacterium salinarum (originally Halobacterium halobium) were measured. The synthesized films have an absorption of around 2.5 at 532 nm and a pH of 8.

View Article and Find Full Text PDF

A case of a thoracic osteochondroma with compression of the spinal cord is reported. The neuroimaging studies are described.

View Article and Find Full Text PDF

A unique case of cerebral toxoplasmosis which had an acute appearance of multiple discrete lesions following a biopsy and its neuroradiological findings are reported in detail. Possible pathophysiological mechanism are presented.

View Article and Find Full Text PDF