Publications by authors named "Acacia Dishman"

Classically, chemokines coordinate leukocyte trafficking during immune responses; however, many chemokines have also been reported to possess direct antibacterial activity in vitro. Yet, the bacterial killing mechanism of chemokines and the biochemical properties that define which members of the chemokine superfamily are antimicrobial remain poorly understood. Here we report that the antimicrobial activity of chemokines is defined by their ability to bind phosphatidylglycerol and cardiolipin, two anionic phospholipids commonly found in the bacterial plasma membrane.

View Article and Find Full Text PDF
Article Synopsis
  • Blastomycosis is a rare fungal infection primarily affecting the lungs and skin, diagnosed through biopsy and culture of affected areas.
  • A 42-year-old man from Wisconsin experienced knee pain and had persistent abdominal lesions misdiagnosed as cellulitis, later confirmed to be blastomycosis through biopsy.
  • This case emphasizes the need for comprehensive physical exams and awareness of rare infections, being the first documented instance of blastomycosis impacting skin, brain, larynx, and knee without lung involvement.
View Article and Find Full Text PDF
Article Synopsis
  • Proteins can change shapes in response to environmental signals, similar to how transistors manage information flow in computers.
  • Designing proteins with two stable shapes is complex, as it involves creating a specific energy landscape with two low-energy states.
  • The study presents "hinge" proteins that switch between two accurately designed states—one when a ligand is absent and one when it is present—validated through advanced imaging and spectroscopy techniques.
View Article and Find Full Text PDF

Metamorphic proteins switch reversibly between multiple distinct, stable structures, often with different functions. It was previously hypothesized that metamorphic proteins arose as intermediates in the evolution of a new fold - rare and transient exceptions to the 'one sequence, one fold' paradigm. However, as described herein, mounting evidence suggests that metamorphic folding is an adaptive feature, preserved and optimized over evolutionary time as exemplified by the NusG family and the chemokine XCL1.

View Article and Find Full Text PDF

Metamorphic proteins are single amino acid sequences that reversibly interconvert between multiple, dramatically different native structures, often with distinct functions. Since the discovery of the first metamorphic proteins in the early 2000s, several additional metamorphic proteins have been identified, and it was suggested that up to 4% of proteins in the PDB may switch folds. Metamorphic proteins have been found to share common features such as marginal thermostability and inconsistencies in predicted secondary structures.

View Article and Find Full Text PDF

species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures.

View Article and Find Full Text PDF

Metamorphic proteins switch between different folds, defying the protein folding paradigm. It is unclear how fold switching arises during evolution. With ancestral reconstruction and nuclear magnetic resonance, we studied the evolution of the metamorphic human protein XCL1, which has two distinct folds with different functions, making it an unusual member of the chemokine family, whose members generally adopt one conserved fold.

View Article and Find Full Text PDF

The metamorphic protein XCL1 switches between two distinct native structures with different functions in the human immune system. This structural interconversion requires complete rearrangement of all hydrogen bonding networks, yet fold-switching occurs spontaneously and reversibly in solution. One structure occupies the canonical α-β chemokine fold and binds XCL1's cognate G-protein coupled receptor, while the other structure occupies a dimeric, all-β fold that binds glycosaminoglycans and has antimicrobial activity.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) are a class of molecules which generally kill pathogens via preferential cell membrane disruption. Chemokines are a family of signaling proteins that direct immune cell migration and share a conserved α-β tertiary structure. Recently, it was found that a subset of chemokines can also function as AMPs, including CCL20, CXCL4, and XCL1.

View Article and Find Full Text PDF

Chemokines interact with their G protein-coupled receptors (GPCRs) through a two-step, two-site mechanism and, through this interaction, mediate various homeostatic and immune response mechanisms. Upon initial recognition of the chemokine by the receptor, the amino terminus of the chemokine inserts into the orthosteric pocket of the GPCR, causing conformational changes that trigger intracellular signaling. There is considerable structural and functional evidence to suggest that the amino acid composition and length of the chemokine amino terminus is critical for GPCR activation, complementing the size and amino acid composition of the orthosteric pocket.

View Article and Find Full Text PDF

Since the proposal of Anfinsen's thermodynamic hypothesis in 1963, our understanding of protein folding and dynamics has gained significant appreciation of its nuance and complexity. Intrinsically disordered proteins, chameleonic sequences, morpheeins, and metamorphic proteins have broadened the protein folding paradigm. Here, we discuss noncanonical protein folding patterns, with an emphasis on metamorphic proteins, and we review known metamorphic proteins that occur naturally and that have been engineered in the laboratory.

View Article and Find Full Text PDF

Engineering the physical properties of particles, especially their size, is an important parameter in the fabrication of successful carrier systems for the delivery of therapeutics. Here, various routes were explored for the fabrication of particles in the nanosize regime. It was demonstrated that the use of a charged species and/or solvent with high dielectric constant can influence the size and distribution of particles, with the charged species having a greater effect on the size of the particles and the solvent a greater effect on the distribution of the particles.

View Article and Find Full Text PDF

Delivery of pharmaceuticals to the cochleae of patients with auditory dysfunction could potentially have many benefits from enhancing auditory nerve survival to protecting remaining sensory cells and their neuronal connections. Treatment would require platforms to enable drug delivery directly to the cochlea and increase the potential efficacy of intervention. Cochlear implant recipients are a specific patient subset that could benefit from local drug delivery as more candidates have residual hearing; and since residual hearing directly contributes to post-implantation hearing outcomes, it requires protection from implant insertion-induced trauma.

View Article and Find Full Text PDF

Background: Nanoparticles with controlled physical properties have been widely used for controlled release applications. In addition to shape, the anisotropic nature of the particles can be an important design criterion to ensure selective surface modification or independent release of combinations of drugs.

Purpose: Electrohydrodynamic (EHD) co-jetting is used for the fabrication of uniform anisotropic nanoparticles with individual compartments and initial physicochemical and biological characterization is reported.

View Article and Find Full Text PDF

In the last several decades, research in the field of drug delivery has been challenged with the fabrication of carrier systems engineered to deliver therapeutics to the target site with sustained and controlled release kinetics. Herein, we report the fabrication of microparticles composed of two distinct compartments: i) one compartment containing a pH responsive polymer, acetal-modified dextran, and PLGA (polylactide-co-glycolide), and ii) one compartment composed entirely of PLGA. We demonstrate the complete release of dextran from the microparticles during a 10-hour period in an acidic pH environment and the complete degradation of one compartment in less than 24h.

View Article and Find Full Text PDF