Cell Mol Biol (Noisy-le-grand)
November 2024
We studied the potential of human bone marrow-derived mesenchymal stem cell conditioned media (hBMSC CM) in protecting endothelial cell properties (viability, proliferation, and migrations) from the deleterious effects produced by the inflammatory environment of HO. Additionally, we investigated their impact on the endothelial cells' gene expression of some inflammatory-related genes, namely, TGF-1, FOS, ATF3, RAF-1, and SMAD3. Human umbilical vein endothelial cells (HUVECs) were cultured individually under three conditions: alone, with varying concentrations of HO, or with varying concentrations of HO and hBMSC CM.
View Article and Find Full Text PDFPreeclampsia (PE) is a serious medically important disorder of human pregnancy, which features pregnancy-induced hypertension and proteinuria. The severe form of PE can progress to eclampsia, a convulsive, life-threatening condition. When placental growth and perfusion are abnormal, the placenta experiences oxidative stress and subsequently secretes abnormal amounts of certain pro-angiogenic factors (eg, PlGF) as well as anti-angiogenic factors (eg, sFlt-1) that enter the maternal circulation.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have been shown to suppress tumor growth, inhibit angiogenesis, regulate cellular signaling, and induce apoptosis in cancer cells. We have earlier reported that placenta-derived decidua parietalis mesenchymal stem/stromal cells (DPMSCs) not only retained their functional characteristics in the cancer microenvironment but also exhibited increased expression of anti-apoptotic genes, demonstrating their anti-tumor properties in the tumor setting. In this study, we have further evaluated the effects of DPMSCs on the functional outcome of human breast cancer cell line MDA231.
View Article and Find Full Text PDFIntroduction: Human decidua basalis mesenchymal stem cells (DBMSCs) are potential therapeutics for the medication to cure inflammatory diseases, like atherosclerosis. The current study investigates the capacity of DBMSCs to stay alive and function in a harmful inflammatory environment induced by high levels of lipopolysaccharide (LPS).
Methods: DBMSCs were exposed to different levels of LPS, and their viability and functional responses (proliferation, adhesion, and migration) were examined.
Mesenchymal stem/stromal cells isolated from chorionic villi of human term placentae (CV-MSCs) possess unique biological characters. They exhibit self-renewal, directional migration, differentiation, and immunomodulatory effects on other cell lineages, by virtue of which they can be utilized as therapeutic carriers, for drug targeting, and therapy. Tumors display characteristic features of a damaged tissue microenvironment, which is saturated with conditions such as hypoxia, sustained inflammation, and increased oxidative stress.
View Article and Find Full Text PDFRecently, we reported the therapeutic potential of mesenchymal stem/stromal cells (MSCs) from the maternal decidua basalis tissue of human term placenta (DBMSCs) to treat inflammatory diseases, such as atherosclerosis and cancer. DMSCs protect endothelial cell functions from the negative effects of oxidative stress mediators including hydrogen peroxide (H O ) and monocytes. In addition, DBMSCs induce the generation of anti-cancer immune cells known as M1 macrophages.
View Article and Find Full Text PDFThe author would like to correct the names for the below co-authors in the online published article.
View Article and Find Full Text PDFBackground: Mesenchymal stem/stromal cells (MSCs) from the decidua basalis (DBMSCs) of the human placenta have important functions that make them potential candidates for cellular therapy. Previously, we showed that DBMSC functions do not change significantly in a high oxidative stress environment, which was induced by hydrogen peroxide (HO) and immune cells. Here, we studied the consequences of glucose, another oxidative stress inducer, on the phenotypic and functional changes in DBMSCs.
View Article and Find Full Text PDFBackground: Mesenchymal Stem/Stromal Cells (MSCs) from the (DPMSCs) of human term placenta express several molecules with important biological and immunological properties. DPMSCs induce natural killer cell expression of inflammatory receptors and their cytotoxic activity against cancer cells. These properties make DPMSCs promising therapeutical agent for cancer.
View Article and Find Full Text PDFBackground: The placenta is an abundant source of mesenchymal stem/stromal cells (MSC), but our understanding of their functional properties remains limited. We previously created a placental-derived chorionic MSC (CMSC) cell line to overcome the difficulties associated with conducting extensive optimization and experimental work on primary cells. The aim of this study was to characterize the migratory behavior of the CMSC29 cell line .
View Article and Find Full Text PDFBackground: To initiate tissue repair, mesenchymal stem/stromal cells (MSCs) must enter the blood stream, migrate to the targeted area, cross the endothelial barrier and home to the damaged tissue. This process is not yet fully understood in humans and thus, the aim of this study was to develop an placental vessel perfusion method to examine human MSC movement from a blood vessel into human tissue. This will provide a better understanding of MSC migration, movement through the endothelial barrier and engraftment into target tissue, in a setting that more closely represents the state, compared with conventional human cell culture models.
View Article and Find Full Text PDFPlacental mesenchymal stem cells from maternal decidua basalis tissue (DBMSCs) are promising cells for tissue repair because of their multilineage differentiation and ability to protect endothelial cells from injury. Here, we examined DBMSC interaction with macrophages and whether this interaction could modulate the characteristics and functions of these macrophages. We induced monocytes to differentiate into M1-like macrophages in the presence of DBMSCs.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells derived from the chorionic villi of human placentae (pMSCs) produce a unique array of mediators that regulate the essential cellular functions of their target cells. These properties make pMSCs attractive candidates for cell-based therapy. Here, we examined the effects of culturing human natural killer (NK) cells with pMSCs on NK cell functions.
View Article and Find Full Text PDFBackground: Human decidua basalis mesenchymal stem/multipotent stromal cells (DBMSCs) inhibit endothelial cell activation by inflammation induced by monocytes. This property makes them a promising candidate for cell-based therapy to treat inflammatory diseases, such as atherosclerosis. This study was performed to examine the ability of DBMSCs to protect endothelial cell functions from the damaging effects resulting from exposure to oxidatively stress environment induced by HO and monocytes.
View Article and Find Full Text PDFBackground: Mesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) protect human endothelial cells from injury induced by hydrogen peroxide (HO). In diabetes, elevated levels of glucose (hyperglycaemia) induce HO production, which causes the endothelial dysfunction that underlies the enhanced immune responses and adverse complications associated with diabetes, which leads to thrombosis and atherosclerosis. In this study, we examined the ability of pMSCs to protect endothelial cell functions from the negative impact of high level of glucose.
View Article and Find Full Text PDFStem cell-based therapies rely on stem cell ability to repair in an oxidative stress environment. Preconditioning of mesenchymal stem cells (MSCs) to a stress environment has beneficial effects on their ability to repair injured tissues. We previously reported that MSCs from the (DBMSCs) of human placenta have many important cellular functions that make them potentially useful for cell-based therapies.
View Article and Find Full Text PDFBackground: Human decidua parietalis mesenchymal stem/multipotent stromal cells (DPMSCs) have unique phenotypic and functional properties that make them promising candidates for cell-based therapy. Here, we investigated DPMSC interaction with natural killer (NK) cells, and the effects of this interaction on NK cell phenotypic characteristics and functional activities.
Methods: DPMSCs isolated from the decidua parietalis of human fetal membranes were cultured with interleukin (IL)-2-activated and IL-2-unactivated NK cells isolated from healthy human peripheral blood.
The decidua basalis and placental chorionic villi are critical components of maternal-fetal interface, which plays a critical role in normal placental development. Failure to form a proper maternal-fetal interface is associated with clinically important placental pathologies including preeclampsia and fetal growth restriction. Placental trophoblast cells are well known for their critical roles in establishing the maternal-fetal interface; however accumulating evidence also implicates mesenchymal stem/stromal cells that envelop the maternal and fetal blood vessels as playing an important role in the formation and efficient functioning of the interface.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is considered the 3rd leading cause of death by cancer worldwide with the majority of patients were diagnosed in the late stages. Currently, there is no effective therapy. The selection of an animal model that mimics human cancer is essential for the identification of prognostic/predictive markers, candidate genes underlying cancer induction and the examination of factors that may influence the response of cancers to therapeutic agents and regimens.
View Article and Find Full Text PDFIntroduction: Chorionic mesenchymal stem/stromal cells (CMSC) can be isolated from the placenta in large numbers. Although their functions are yet to be fully elucidated, they have a role in tissue development and repair. To fulfil such a role, CMSC must be able to migrate to the microenvironment of the injury site.
View Article and Find Full Text PDFRecently, we reported the isolation and characterization of mesenchymal stem cells from the decidua basalis of human placenta (DBMSCs). These cells express a unique combination of molecules involved in many important cellular functions, which make them good candidates for cell-based therapies. The endothelium is a highly specialized, metabolically active interface between blood and the underlying tissues.
View Article and Find Full Text PDFMesenchymal stem/stromal cells derived from chorionic villi of human term placentae (pMSCs) produce a unique combination of molecules, which modulate important cellular functions of their target cells while concurrently suppressing their immune responses. These properties make MSCs advantageous candidates for cell-based therapy. Our first aim was to examine the effect of high levels of oxidative stress on pMSC functions.
View Article and Find Full Text PDF