Small cell lung cancer (SCLC) often exhibits Rb deficiency, TRβ and p130 deletion, and SKP2 amplification, suggesting TRβ inactivation and SKP2 activation. It is reported that SKP2 targeted therapy is effective in some cancers in vitro and in vivo, but it is not reported for the treatment of SCLC and retinoblastoma. SKP2 is the synthetic lethal gene in SCLC and retinoblastoma, so SKP2 can be used for targeted therapy in SCLC and retinoblastoma.
View Article and Find Full Text PDFPurpose: The transforming growth factor-beta (TGF-β) pathway plays a paradoxical, context-dependent role in pancreatic ductal adenocarcinoma (PDAC): a tumor-suppressive role in non-metastatic PDAC and a tumor-promotive role in metastatic PDAC. We hypothesize that non-SMAD-TGF-β signaling induces PDAC progression.
Methods: We investigated the expression of non-SMAD-TGF-β signaling proteins (pMAPK14, PD-L1, pAkt and c-Myc) in patient-derived tissues, cell lines and an immunocompetent mouse model.
Cancer as a genetic disease is by now well recognized. Genomic analysis of cancer cells, therefore, has greatly enhanced our ability to identify genetic alterations associated with various cancer types, including both lympho-hematopoietic as well as solid tumors. Chronic myeloid leukemia (CML), based on the specific diagnostic genetic abnormality has served as a prototype disease to clearly demonstrate the significance of the genomic analysis of cancer in identifying targeted therapy.
View Article and Find Full Text PDFBackground: Hyperplastic polyposis protein 1 (HPP1) encodes a tumor-suppressive transmembrane cleavable epidermal growth factor-like ligand. It is unclear as to whether cleavage and shedding of HPP1 are essential steps in achieving its tumor suppressive properties. ADAM proteins are key players in cellular ectodomain shedding processes with ADAM17 being well characterized and representing the most likely sheddase for HPP1.
View Article and Find Full Text PDFThe precise role of tumor associated macrophages remains unclear in pancreatic ductal adenocarcinoma (PDAC) while TGF-ß has an unclear role in metastases formation. In order to understand the role of IL23, an interleukin associated with macrophage polarization, we investigated IL23 in the context of TGF-ß expression in PDAC. We hypothesized that IL23 expression is associated with metastatic development and survival in PDAC.
View Article and Find Full Text PDFHPP1, a novel tumor suppressive epidermal growth factor (EGF)-like ligand, mediates its effects through signal transducer and activators of transcription (STAT) activation. We previously demonstrated the importance of STAT1 activation for HPP1 function; however the contribution of STAT2 remains unclear. We sought to delineate the components of JAK-STAT-interferon (IFN) signaling specifically associated with HPP1s biological effects.
View Article and Find Full Text PDFBackground: The Radiation Therapy Oncology Group 98-11 clinical trial demonstrated the superiority of standard 5-fluorouracil/mitomycin-C over 5-fluorouracil/cisplatin in combination with radiation in the treatment of anal squamous cell cancer. Tumor size (>5 cm) and lymph node metastases are associated with disease progression. There may be key molecular differences (eg, DNA methylation changes) in tumors at high risk for progression.
View Article and Find Full Text PDFObjective: Components of metabolic syndrome (MS) have been individually linked to colorectal cancer risk and prognosis; however, an understanding of the dominant mechanisms is lacking.
Materials And Methods: Twenty-one patients (10 MS; 11 non-MS) with resectable colorectal cancer were prospectively enrolled. Patients were classified for MS by the World Health Organization criteria and tested for circulating vascular endothelial growth factor (VEGF), interleukin-6 (IL-6), insulin-like growth factor-1 (IGF-1), fasting insulin, and tumor expression of IGF-1 receptor (IGF-1R), insulin-receptor (IR) and receptor for advanced glycation end-products (RAGE).
Background: Changes in host tumor genome DNA methylation patterns are among the molecular alterations associated with HPV-related carcinogenesis. However, there is little known about the epigenetic changes associated specifically with the development of anal squamous cell cancer (SCC). We sought to characterize broad methylation profiles across the spectrum of anal squamous neoplasia.
View Article and Find Full Text PDFBackground: Altered expression of specific microRNAs (miRNA) is known to occur during colorectal carcinogenesis. However, little is known about the genome-wide alterations in miRNA expression during the neoplastic progression of primary colorectal cancers.
Methods: Using a miRNA array platform, we evaluated the expression of 668 miRNA in primary colonic adenocarcinomas.
The progression of cervical intraepithelial lesions to invasive cancer is associated with corresponding reductions in human papillomavirus (HPV) L1 capsid antigen (L1) expression. We sought to determine whether a similar loss of L1 occurs during anal carcinogenesis using immunohistochemistry on paraffin-embedded sections as well as INNO-LiPA HPV Genotyping (Innogenetics, Gent, Belgium) technology to determine HPV infection status. We analyzed 31 squamous cell carcinomas (SCCs), 26 SCCs in situ (SCC-IS), and 11 normal anal mucosae from 36 patients.
View Article and Find Full Text PDFMalignant peripheral nerve sheath tumors (MPNSTs) develop in patients with underlying NF1, and usually arise as a result of malignant transformation of a pre-existing plexiform neurofibroma. The clonal cytogenetic abnormalities reported in primary MPNST include complex karyotypes with chromosome numbers in the triploid or tetraploid range with recurrent abnormalities of several chromosomes including losses or imbalances. As a prelude to cell biological, pharmacological, and functional studies to investigate pathways and gene(s) associated with multistep tumorigenesis, which includes progression, metastasis and resistance to therapy in MPNST, detailed molecular cytogenetic and genetic analyses of cell lines from primary, metastatic and recurrent MPNST with underlying NF1 disorder have been performed.
View Article and Find Full Text PDFHPP1 is a recently discovered gene that is epigenetically silenced in a number of tumor types, suggesting a potential role as a tumor suppressor. However, whether HPP1 has tumor suppressor activity is not clearly known. We have sought to investigate the effects of HPP1 on tumor growth and survival and to identify signaling pathways that mediate HPP1's mechanism of action.
View Article and Find Full Text PDFThe recently described gene, RAB32, is a ras proto-oncogene family member that encodes an A-kinase-anchoring protein. RAB32 has been found to be frequently hypermethylated in microsatellite instability-high (MSI-H) colon cancers. We sought to determine the prevalence of RAB32 hypermethylation in gastric and endometrial adenocarcinomas, the 2 other major tumor types in which MSI-H is common.
View Article and Find Full Text PDFObjective: The human 8-oxoguanine DNA N-glycosylase 1 gene encodes a DNA glycosylase that is involved in the base excision repair of 8-hydroxy-2-deoxyguanine from oxidatively-damaged DNA and expressed in lung tissue. The codon 326 polymorphism in the hOGG1 gene has been suggested to reduce DNA repair enzyme activity based on in vitro functional analysis. The goal of the present study is to determine whether the codon 326 polymorphism was significantly associated with alterations in individual risk for lung cancer.
View Article and Find Full Text PDFPurpose: The human oxoguanine glycosylase 1 (hOGG1) gene encodes a DNA glycosylase that is involved in excision repair of 8-OH-dG (8-hydroxy-2-deoxyguanine) from oxidatively damaged DNA. To determine whether hOGG1 has a role in the risk of prostate cancer we screened normal prostate tissue specimens for hOGG1 expression and assessed the role of hOGG1 Ser326Cys polymorphism in the risk of prostate cancer.
Materials And Methods: In 5 normal prostate tissues hOGG1 expression was determined by reverse transcriptase-polymerase chain reaction.
Background: UGT1A10 exhibits glucuronidating activity against metabolites of the tobacco smoke carcinogen, benzo(a)pyrene, and is expressed highly in numerous target tissues for tobacco-related cancers including the upper aerodigestive tract. The current study was conducted to determine the prevalence of genetic polymorphisms in the UGT1A10-specific region of the UDP-glucuronosyltransferase family 1A locus and their relationship with risk for orolaryngeal carcinoma.
Methods: The authors analyzed UGT1A10-specific sequences in a population of black, white, and Asian individuals.
The human OGG1 (hOGG1) gene encodes a DNA glycosylase that is involved in the excision repair of 8-hydroxy-2'-deoxyguanine (8-OH-dG) from oxidatively-damaged DNA. To determine whether hOGG1 plays a role in risk for orolaryngeal cancer, we screened normal orolaryngeal tissue specimens for hOGG1 expression and assessed the role of the hOGG1 Ser326Cys polymorphism in risk for orolaryngeal cancer. hOGG1 expression was determined by reverse transcription-polymerase chain reaction of total RNA from aerodigestive tract tissues, and hOGG1 genotyping was performed by polymerase chain reaction-restriction fragment length polymorphism analysis of buccal cell DNA isolated from 169 Caucasian orolaryngeal cancer cases and 338 race-, sex- and age-matched controls.
View Article and Find Full Text PDF