The emerging role of glial cells in modulating neuronal excitability and synaptic strength is a growing field in neuroscience. In recent years, a pivotal role of gliotransmission in homeostatic presynaptic plasticity has been highlighted and glial-derived ATP arises as a key contributor. However, very little is known about the glial non-vesicular ATP-release pathway and how ATP participates in the modulation of synaptic strength.
View Article and Find Full Text PDFOver the last decades, since the discovery of ATP as a transmitter, accumulating evidence has been reported about the role of this nucleotide and purinergic receptors, in particular P2X7 receptors, in the modulation of synaptic strength and plasticity. Purinergic signaling has emerged as a crucial player in orchestrating the molecular interaction between the components of the tripartite synapse, and much progress has been made in how this neuron-glia interaction impacts neuronal physiology under basal and pathological conditions. On the other hand, pannexin1 hemichannels, which are functionally linked to P2X7 receptors, have appeared more recently as important modulators of excitatory synaptic function and plasticity under diverse contexts.
View Article and Find Full Text PDFIron deficiency anemia is a prevalent health problem among pregnant women and infants, particularly in the developing countries that causes brain development deficits and poor cognitive outcomes. Since tissue iron depletion may impair myelination and trigger cellular hypoxic signaling affecting blood vessels, we studied myelination and the neurovascular unit (NVU) in infant rats born to mothers fed with an iron deficient (ID) or control diet from embryonic day 5 till weaning. Blood samples and brains of rat pups at postnatal day (PND) 14 and 30 were analyzed.
View Article and Find Full Text PDFThis protocol describes a method for high-resolution confocal imaging of pericytes with the far-red fluorophore TO-PRO-3 Iodide 642/661 in cerebral slices of murine. Identification of pericytes with TO-PRO-3 is a short time-consuming, high cost-effective and robust technique to label pericytes with no need for immunostaining or generation of reporter mice. Since the TO-PRO-3 stain resists immunofluorescence, and lacks spectral overlap, the probe is well suited for multiple labelling.
View Article and Find Full Text PDFPerivascular pericytes are key regulators of the blood-brain barrier, vascular development, and cerebral blood flow. Deciphering pericyte roles in health and disease requires cellular tracking; yet, pericyte identification remains challenging. A previous study reported that the far-red fluorophore TO-PRO-3 (642/661), usually employed as a nuclear dye in fixed tissue, was selectively captured by live pericytes from the subventricular zone.
View Article and Find Full Text PDFA key feature of neurotransmission is its ability to adapt to changes in neuronal environment, which is essential for many brain functions. Homeostatic synaptic plasticity (HSP) emerges as a compensatory mechanism used by neurons to adjust their excitability in response to changes in synaptic activity. Recently, glial cells emerged as modulators for neurotransmission by releasing gliotransmitters into the synaptic cleft through pathways that include P2X receptors (P2XR), connexons, and pannexons.
View Article and Find Full Text PDFGlutaric acidemia I (GA-I) is an inherited neurometabolic childhood disease characterized by bilateral striatal neurodegeneration upon brain accumulation of millimolar concentrations of glutaric acid (GA) and related metabolites. Vascular dysfunction, including abnormal cerebral blood flow and blood-brain barrier damage, is an early pathological feature in GA-I, although the affected cellular targets and underlying mechanisms remain unknown. In the present study, we have assessed the effects of GA on capillary pericyte contractility in cerebral cortical slices and pericyte cultures, as well as on the survival, proliferation, and migration of cultured pericytes.
View Article and Find Full Text PDFFront Mol Neurosci
December 2018
The classical view of synapses as the functional contact between presynaptic and postsynaptic neurons has been challenged in recent years by the emerging regulatory role of glial cells. Astrocytes, traditionally considered merely supportive elements are now recognized as active modulators of synaptic transmission and plasticity at the now so-called "tripartite synapse." In addition, an increasing body of evidence indicates that beyond immune functions microglia also participate in various processes aimed to shape synaptic plasticity.
View Article and Find Full Text PDFGlia plays an active role in neuronal functions and dysfunctions, some of which depend on the expression of astrocyte connexins, the gap junction channel and hemichannel proteins. Under neuroinflammation triggered by the endotoxin lipopolysacharide (LPS), microglia is primary stimulated and releases proinflammatory agents affecting astrocytes and neurons. Here, we investigate the effects of such microglial activation on astrocyte connexin-based channel functions and their consequences on synaptic activity in an ex vivo model.
View Article and Find Full Text PDFIn the brain, astrocytes represent the cellular population that expresses the highest amount of connexins (Cxs). This family of membrane proteins is the molecular constituent of gap junction channels and hemichannels that provide pathways for direct cytoplasm-to-cytoplasm and inside-out exchange, respectively. Both types of Cx channels are permeable to ions and small signaling molecules allowing astrocytes to establish dynamic interactions with neurons.
View Article and Find Full Text PDFAstrocytes play active roles in brain physiology by dynamic interactions with neurons. Connexin 30, one of the two main astroglial gap-junction subunits, is thought to be involved in behavioral and basic cognitive processes. However, the underlying cellular and molecular mechanisms are unknown.
View Article and Find Full Text PDFA typical feature of astrocytes is their high level of connexin expression. These membrane proteins constitute the molecular basis of two types of channels: gap junction channels that allow direct cytoplasm-to-cytoplasm communication and hemichannels that provide a pathway for exchanges between the intra- and extracellular media. An unusual property of these channels is their permeability for ions but also for small signaling molecules.
View Article and Find Full Text PDFThe source size and density determine the extent of nitric oxide (NO) diffusion which critically influences NO signaling. In the brain, NO released from postsynaptic somas following NMDA-mediated activation of neuronal nitric oxide synthase (nNOS) retrogradely affects smaller presynaptic targets. By contrast, in guinea pig trigeminal motor nucleus (TMN), NO is produced presynaptically by tiny and disperse nNOS-containing terminals that innervate large nNOS-negative motoneurons expressing the soluble guanylyl-cyclase (sGC); consequently, it is uncertain whether endogenous NO supports an anterograde signaling between pre-motor terminals and postsynaptic trigeminal motoneurons.
View Article and Find Full Text PDFThe mechanisms involved in Alzheimer's disease are not completely understood and how glial cells contribute to this neurodegenerative disease remains to be elucidated. Because inflammatory treatments and products released from activated microglia increase glial hemichannel activity, we investigated whether amyloid-β peptide (Aβ) could regulate these channels in glial cells and affect neuronal viability. Microglia, astrocytes, or neuronal cultures as well as acute hippocampal slices made from GFAP-eGFP transgenic mice were treated with the active fragment of Aβ.
View Article and Find Full Text PDFSpinal astrocytes are coupled by connexin (Cx) gap junctions and express pannexin 1 (Px1) and purinergic receptors. Fibroblast growth factor 1 (FGF-1), which is released in spinal cord injury, activated spinal astrocytes in culture, induced secretion of ATP, and permeabilized them to relatively large fluorescent tracers [ethidium (Etd) and lucifer yellow (LY)] through "hemichannels" (HCs). HCs can be formed by connexins or pannexins; they can open to extracellular space or can form gap junction (GJ) channels, one HC from each cell.
View Article and Find Full Text PDFAstrocytes provide metabolic substrates to neurons in an activity-dependent manner. However, the molecular mechanisms involved in this function, as well as its role in synaptic transmission, remain unclear. Here, we show that the gap-junction subunit proteins connexin 43 and 30 allow intercellular trafficking of glucose and its metabolites through astroglial networks.
View Article and Find Full Text PDFCultured glomus cells from rat carotid bodies were prepared for optical studies of intracellular calcium using the Fura-2 dye. The baseline calcium had a mean of about 40 nM showing either a relatively steady level or large calcium spikes. Some cells did not show measurable levels of [Ca(2+)](i).
View Article and Find Full Text PDFThe activity of gap junction channels between cultured and clustered carotid body glomus cells of the rat was studied with dual voltage clamping during normoxia (PO(2) 300 Torr) and hypoxia induced by sodium dithionite (Na(2)S(2)O(4)) or 100% N(2). Na(2)S(2)O(4) reduced the saline PO(2) to approximately 10 Torr, whereas 100% N(2) reduced ambient O(2) to approximately 60 Torr. The following observations were made.
View Article and Find Full Text PDFWe demonstrate the presence of nitric oxide synthase containing fibers within the guinea pig trigeminal motor nucleus and describe the effects of nitric oxide (NO) on trigeminal motoneurons. Using immunohistochemical techniques, we observed nitrergic fibers displaying varicosities and giving rise to bouton-like structures in apposition to retrogradely labeled motoneuron processes, most of which were dendrites. NO-donors evoked a membrane depolarization (mean 7.
View Article and Find Full Text PDFThe purpose of this work was to characterize the gap junctions between cultured glomus cells of the rat carotid body and to assess the effects of acidity and accompanying changes in [Ca(2+)](i) on electric coupling. Dual voltage clamping of coupled glomus cells showed a mean macrojunctional conductance (G(j)) of 1.16 nS+/-0.
View Article and Find Full Text PDFIntact and cultured carotid bodies (CBs) of the rat were used in this study. Applications of membrane-permeant db-cAMP to cultured carotid bodies increased electric coupling between most glomus cells (increasing junctional conductance) probably by opening preformed intercellular channels. This a short-term effect of the nucleotide, increasing gating between glomus cells.
View Article and Find Full Text PDFWe identified a gap junction protein subunit, connexin43 (Cx43) by immunofluorescence and immunoblotting, in cultured rat carotid body cells and in whole organs. In 1-week-old cultures, all cells were flat but after 3 h exposure to 8Br-cAMP (1 mM), tyrosine hydroxylase (TH) positive cells (chemoreceptors), but not TH negative cells, adopted a round body with multiple thin arborization processes. The incidence of dye coupling between cultured cells of the same type increased from 26% in controls to 73% after treatment with 8Br-cAMP.
View Article and Find Full Text PDFGlomus cells of the carotid body contain and secrete chemicals during 'natural' stimulation (hypoxia, hypercapnia and acidity), thus, the birth of the 'transmitter hypothesis of chemoreception'. Released chemicals would cross the synaptic cleft between glomus cells and carotid nerve terminals to depolarize the nerve ending membrane during excitation and hyperpolarize the membrane during inhibition. The main problem with this hypothesis is that specific synaptic blockers modify but do not block the effects of natural stimulation, while blocking the effects of the putative transmitters.
View Article and Find Full Text PDFShort-term cultures of glomus cells (up to seven days), were employed to study intercellular electrical communications. Bidirectional electric coupling was established under current clamping after impaling two adjacent glomus cells with microelectrodes, and alternate stimulation and recording. Their resting potential (Vm) and input resistance (Ro) were thus measured.
View Article and Find Full Text PDF