Amyloid precursor protein (App) plays a crucial role in Alzheimer's disease via the production and deposition of toxic β-amyloid peptides. App is heavily expressed in neurons, the focus of the vast majority of studies investigating its function. Meanwhile, almost nothing is known about App's function in glia, where it is also expressed, and can potentially participate in the regulation of neuronal physiology.
View Article and Find Full Text PDFThe remarkable ability of the nervous system to modify its structure and function is mostly experience and activity modulated. The molecular basis of neuronal plasticity has been studied in higher behavioral processes, such as learning and memory formation. However, neuronal plasticity is not restricted to higher brain functions and it may provide a basic feature of adaptation of all neural circuits.
View Article and Find Full Text PDFLight acts as environmental signal to control animal behavior at various levels. The Drosophila larval nervous system is used as a unique model to answer basic questions on how light information is processed and shared between rapid and circadian behaviors. Drosophila larvae display a stereotypical avoidance behavior when exposed to light.
View Article and Find Full Text PDFPlastic changes at the presynaptic sites of the mushroom body (MB) principal neurons called Kenyon cells (KCs) are considered to represent a neuronal substrate underlying olfactory learning and memory. It is generally believed that presynaptic and postsynaptic sites of KCs are spatially segregated. In the MB calyx, KCs receive olfactory input from projection neurons (PNs) on their dendrites.
View Article and Find Full Text PDFThe parthenogenetic marbled crayfish (Procambarus spec.) has recently been introduced as a new preparation for neuroethological studies. Since isogeneity apparently limits inter-individual variation, this otherwise typical decapod species may be especially valuable for circadian studies.
View Article and Find Full Text PDFCrustaceans have frequently been used to study the neuroethology of both agonistic behavior and circadian rhythms, but whether their highly stereotyped and quantifiable agonistic activity is controlled by circadian pacemakers has, so far, not been investigated. Isolated marbled crayfish (Procambarus spec.) displayed rhythmic locomotor activity under 12-h light:12-h darkness (LD12:12) and rhythmicity persisted after switching to constant darkness (DD) for 8 days, suggesting the presence of endogenous circadian pacemakers.
View Article and Find Full Text PDF