The objective of this work was to investigate the effect of microfluidics on the quality attributes of metformin hydrochloride-loaded poly lactic-co-glycolic acid polymeric particles (MFH-PLGA PPs) when compared to a traditional double emulsion batch method. The relationship of encapsulation and loading efficiencies, yield %, particle size, surface morphology, and release profile with process and formulation variables were determined using design of experiments (DoE). The effects of the dispersal method of the primary (sonication vs.
View Article and Find Full Text PDFWe present simple, inexpensive microfluidics-based fabrication of highly monodisperse poly(ionic liquid) microgel beads with a multitude of functionalities that can be chemically switched in facile fashion by anion exchange and further enhanced by molecular inclusion. Specifically, we show how the exquisite control over bead size and shape enables extremely precise, quantitative measurements of anion- and solvent-induced volume transitions in these materials, a crucial feature driving several important applications. Next, by exchanging diverse anions into the synthesized microgel beads, we demonstrate stimuli responsiveness and a multitude of novel functionalities including redox response, controlled release of chemical payloads, magnetization, toxic metal removal from water, and robust, reversible pH sensing.
View Article and Find Full Text PDFIn this work, carboxymethyl-β-cyclodextrin (CM-β-CD) polymer modified Fe(3)O(4) nanoparticles (CDpoly-MNPs) was synthesized for selective removal of Pb(2+), Cd(2+), Ni(2+) ions from water. This magnetic adsorbent was characterized by TEM, FTIR, XPS and VSM. The adsorption of all studied metal ions onto CDpoly-MNPs was found to be dependent on pH, ionic strength, and temperature.
View Article and Find Full Text PDF