Aim: Chronic hypoxia is a common cause of pulmonary hypertension (PH). We test the hypothesis that microRNA-210 (miR-210) mediates hypoxia-induced PH by targeting mitochondrial metabolism and increasing reactive oxygen species (mtROS) production in the lungs.
Methods: Adult wildtype (WT) or miR-210 knockout (KO) mice were exposed to hypoxia (10.
Chronic hypoxia-induced pulmonary hypertension (CHPH) presents a complex challenge, characterized by escalating pulmonary vascular resistance and remodeling, threatening both newborns and adults with right heart failure. Despite advances in understanding the pathobiology of CHPH, its molecular intricacies remain elusive, particularly because of the multifaceted nature of arterial remodeling involving the adventitia, media, and intima. Cellular imbalance arises from hypoxia-induced mitochondrial disturbances and oxidative stress, reflecting the diversity in pulmonary hypertension (PH) pathology.
View Article and Find Full Text PDFA major cause of osteoporosis is impaired coupled bone formation. Mechanistically, both osteoclast-derived and bone-derived growth factors have been previously implicated. Here, we hypothesize that the release of bone calcium during osteoclastic bone resorption is essential for coupled bone formation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to memory loss and is often accompanied by increased anxiety. Although AD is a heterogeneous disease, dysregulation of inflammatory pathways is a consistent event. Interestingly, the amyloid precursor protein (APP), which is the source of the amyloid peptide Aβ, is also necessary for the efficient regulation of the innate immune response.
View Article and Find Full Text PDFWe have previously demonstrated that the transcription co-factor yes-associated protein 1 (YAP1) promotes vascular smooth muscle cell (VSMC) de-differentiation. Yet, the role and underlying mechanisms of YAP1 in neointima formation in vivo remain unclear. The goal of this study was to investigate the role of VSMC-expressed YAP1 in vascular injury-induced VSMC proliferation and delineate the mechanisms underlying its action.
View Article and Find Full Text PDFL-N-Nitro arginine methyl ester (L-NAME) has been widely applied for several decades in both basic and clinical research as an antagonist of nitric oxide synthase (NOS). Herein, we show that L-NAME slowly releases NO from its guanidino nitro group. Daily pretreatment of rats with L-NAME potentiated mesenteric vasodilation induced by nitrodilators such as nitroglycerin, but not by NO.
View Article and Find Full Text PDFIn response to vascular injury, vascular smooth muscle cells (VSMCs) may switch from a contractile to a proliferative phenotype thereby contributing to neointima formation. Previous studies showed that the long noncoding RNA (lncRNA) is critical for paraspeckle formation and tumorigenesis by promoting cell proliferation and migration. However, the role of in VSMC phenotypic modulation is unknown.
View Article and Find Full Text PDFDinitrosyl iron complexes (DNICs) are important intermediates in the metabolism of nitric oxide (NO). They have been considered to be NO storage adducts able to release NO, scavengers of excess NO during inflammatory hypotensive shock, and mediators of apoptosis in cancer cells, among many other functions. Currently, all studies of DNICs in biological matrices use electron paramagnetic resonance (EPR) for both detection and quantification.
View Article and Find Full Text PDFThe present study was undertaken to determine the mechanism whereby calcitropic hormones and mesenchymal stem cell progeny changes are involved in bone repletion, a regenerative bone process that restores the bone lost to calcium deficiency. To initiate depletion, weanling mice with a mixed C57BL/6 (75%) and CD1 (25%) genetic background were fed a calcium-deficient diet (0.01%) for 14 days.
View Article and Find Full Text PDFPluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered.
View Article and Find Full Text PDFMOG1 was initially identified as a protein that interacts with the small GTPase Ran involved in transport of macromolecules into and out of the nucleus. In addition, we have established that MOG1 interacts with the cardiac sodium channel Nav1.5 and regulates cell surface trafficking of Nav1.
View Article and Find Full Text PDFObjective: To investigate the functional role of the microRNA (miR)-15b/16 in vascular smooth muscle (SM) phenotypic modulation.
Approach And Results: We found that miR-15b/16 is one of the most abundant mRs expressed in contractile vascular smooth muscle cells (VSMCs). However, when contractile VSMCs get converted to a synthetic phenotype, miR-15b/16 expression is significantly reduced.