Nanoparticles embedded in polymer matrices play a critical role in enhancing the properties and functionalities of composite materials. Detecting and quantifying nanoparticles from optical images (fixed samples-in vitro imaging) is crucial for understanding their distribution, aggregation, and interactions, which can lead to advancements in nanotechnology, materials science, and biomedical research. In this article, we propose an ensembled deep learning approach for automatic nanoparticle detection and oligomerization quantification in a polymer matrix for optical images.
View Article and Find Full Text PDFIn this study we investigated a novel approach to designing a graphene metamaterial (GMM) based terahertz (THz) absorber with dual-mode functionality, tunability, and broadband absorption capabilities. The study leverages the unique properties of graphene, a material known for its exceptional electronic and optical characteristics, combined with metamaterials to achieve efficient THz absorption. Here we performed extensive simulation on four different types of configurations and found the optimized structure has the highest bandwidth of 3.
View Article and Find Full Text PDFRecently, metamaterials and metasurface have gained rapidly increasing attention from researchers due to their extraordinary optical and electrical properties. Metamaterials are described as artificially defined periodic structures exhibiting negative permittivity and permeability simultaneously. Whereas metasurfaces are the 2D analogue of metamaterials in the sense that they have a small but not insignificant depth.
View Article and Find Full Text PDFSurface Plasmon Resonance (SPR) based optical biosensors are recently the most attractive sensing devices that can detect minor changes in refractive index. Multiple methods have been developed to design SPR based biosensors with high-performance and ease of fabrication. This research is about a grating based biosensor that utilizes Silver (Ag) and Titanium (Ti) to produce the SP resonance state.
View Article and Find Full Text PDFDuring the COVID-19 pandemic, pneumonia was the leading cause of respiratory failure and death. In addition to SARS-COV-2, it can be caused by several other bacterial and viral agents. Even today, variants of SARS-COV-2 are endemic and COVID-19 cases are common in many places.
View Article and Find Full Text PDFTo address the growing demand for sustainable agriculture practices, new technologies to boost crop productivity and soil health must be developed. In this research, we propose designing and building an agricultural rover capable of autonomous vegetable harvesting and soil analysis utilizing cutting-edge deep learning algorithms (YOLOv5). The precision and recall score of the model was 0.
View Article and Find Full Text PDFGold nanoparticles (AuNPs) are extensively used in cellular imaging, single-particle tracking, disease diagnosis, studying membrane protein interaction, and drug delivery. Understanding the dynamics of AuNP uptake in live cells is crucial for optimizing their efficacy and safety. Traditional manual methods for quantifying AuNP uptake are time-consuming and subjective, limiting their scalability and accuracy.
View Article and Find Full Text PDFIn this study, we constructed an UV-C illumination chamber using commercially available germicidal lamps and other locally available low-cost components for general-purpose biological decontamination purposes. The illumination chamber provides uniform illumination of around 1 J/cm in under 5 min across the chamber. The control mechanism was developed to automate the on/off process and make it more secure minimizing health and other electrical safety.
View Article and Find Full Text PDFIn this article, we report, as per our knowledge, for the first time, a thin film single junction solar cell with a metasurface absorber layer directly incorporated. We have used an interconnected dual inverted split ring resonator pattern in the InAsP absorber layer. The structure eliminated patterns of conventional metals, such as silver, aluminum, and gold, from the active layer, a common drawback in conventional solar absorbers, hindering their direct integration into solar cells.
View Article and Find Full Text PDFIn recent years, plasmonics has been widely employed to improve light trapping in solar cells. Silver nanospheres have been used in several research works to improve the capability of solar absorption. In this paper, we use silver pyramid-shaped nanoparticles, a noble plasmonic nanoparticle, inside thin-film silicon and InP solar cells to increase light absorption compared to previously published topologies.
View Article and Find Full Text PDFBackground: We have introduced a novel method to quantify the intracellular refractive index (RI) of living cells and determine the molecular interaction of two interacting molecules using single particle spectroscopy. The advantages of this proposed technique over fluorescence-based imaging techniques is that it does not require any contrasting agent and it does not blink and bleach. Instead, our technique provides a non-destructive, non-invasive, high-resolution imaging of live cells.
View Article and Find Full Text PDFIn this manuscript, we report the refractive-index (RI) modulation of various concentrations of nitrogen-doped carbon dots (N@C-dots) embedded in poly(vinyl alcohol) (PVA) polymer. The dispersion and size distribution of N@C-dots embedded within PVA have been investigated using electron microscopy. The RI of PVA-N@C-dots can be enhanced by increasing the doping concentration of highly fluorescent C-dots (quantum yield 44%).
View Article and Find Full Text PDFIn this paper we demonstrate multilayer fabrication of plasmonic gold nanorod arrays using electron-beam lithography (EBL), and show that this structure could be used for multilayered optical storage media capable of continuous-wave (cw) laser readout. The gold nanorods fabricated using the EBL method are aligned perfectly and homogeneous in size and shape, allowing the polarization response of surface plasmon resonance (SPR) to be observed through ensemble array. This property in turn permits polarization detuned SPR readout possible and other manipulations such as progressively twisted arrays through the multilayers to make cw readout possible through deeper layers without too much extinction loss.
View Article and Find Full Text PDFAqueous solutions of ultra-pure gold nanoparticles have been prepared by methods of femtosecond laser ablation from a solid target and fragmentation from already formed colloids. Despite the absence of protecting ligands, the solutions could be (1) fairly stable and poly size-dispersed; or (2) very stable and monodispersed, for the two fabrication modalities, respectively. Fluorescence quenching behavior and its intricacies were revealed by fluorescence lifetime imaging microscopy in rhodamine 6G water solution.
View Article and Find Full Text PDF