Despite the significant amount of denim waste and its potential as a cellulose source, its use has been neglected. This study uses N-methyl morpholine-N-oxide, an eco-friendly solvent, to dissolve denim (including 100 % cotton) and create a denim film. Achieving a 10 % denim record solubility, a cellulosic film was also fabricated for comparison.
View Article and Find Full Text PDFNon-degradable plastic mulch films used in agriculture are polluting the environment by leaving residues and microplastics in the soil. They are also difficult to recycle due to contamination during their use. Biodegradable mulch films are needed as alternatives so that they can be used effectively during the growing season and later be ploughed to be degraded in soil.
View Article and Find Full Text PDFWith an increase in environmental pollution and microplastic problems, it is more urgent now to replace non-biodegradable films with biodegradable films that are low-cost and from renewable resources. Cotton gin motes (GM), a type of cellulosic waste that is generated from cotton ginning, is an excellent candidate for fabricating biodegradable films due to its properties and abundance. In this study, GM was first mechanically milled into a fine powder, followed by compounding with polycaprolactone (PCL) and extruded to produce composite pellets which were then compress-moulded into composite films.
View Article and Find Full Text PDFN-methyl morpholine-N-oxide (NMMO) is the only commercialised solvent to dissolve cellulose and produce lyocell. However, the molecular mechanism of NMMO-induced cellulose solubilisation is unknown which limits further process development. In this work, and for the first time the complete dissolution process of a large cellulose bunch was simulated in NMMO monohydrate using long microsecond molecular dynamic simulations.
View Article and Find Full Text PDFAdditive manufacturing (AM) through material extrusion (MEX) is becoming increasingly popular worldwide due to its simple, sustainable and safe technique of material preparation, with minimal waste generation. This user-friendly technique is currently extensively used in diverse industries and household applications. Recently, there has been increasing attention on polycaprolactone (PCL)-based composites in MEX due to their improved biodegradability.
View Article and Find Full Text PDFCotton gin trash (CGT), a lignocellulosic waste generated during cotton fibre processing, has recently received significant attention for production of composite bio-plastics. However, earlier studies were limited to either with biodegradable polymers, through small-scale solution-casting method, or using industrially adaptable extrusion route, but with non-biodegradable polymers. In this study, a scale-up production of completely biodegradable CGT composite plastic film with adjustable biodegradation rate is proposed.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2022
Lignin is a natural source of UV-shielding materials, though its recalcitrant and heterogeneous structure makes the extraction and purification processes complex. However, lignin's functionality can be directly utilised when it stays as native with cellulose and hemicellulose in plant biomass, rather than being separated. The fabrication process of this native lignin is sustainable, as it consumes less energy and chemicals compared to purified lignin; thus, it is an economic and more straightforward approach.
View Article and Find Full Text PDFLignin is a natural light-coloured ultraviolet (UV) absorber; however, conventional extraction processes usually darken its colour and could be detrimental to its UV-shielding ability. In this study, a sustainable way of fabricating lignin-cellulose nanocrystals (L-CNCs) from hemp hurd is proposed. A homogeneous morphology of the hemp particles was achieved by ball milling, and L-CNCs with high aspect ratio were obtained through mild acid hydrolysis on the ball-milled particles.
View Article and Find Full Text PDFSci Total Environ
February 2022
Every year a massive 2.16 million metric tons of denim jeans is globally wasted and mostly goes into landfill. Though denim is highly rich in cellulose, its valorisation has received little attention.
View Article and Find Full Text PDFDye wastewater has attracted much attention due to its severe environmental and health problems. The main challenge of separating dyes from wastewater, using adsorption, is developing a functional adsorbent that is cost-effective and sustainable. In this work, we have fabricated a novel low-cost membrane with antibacterial properties from naturally sustainable lemongrass (LG).
View Article and Find Full Text PDF