Publications by authors named "Absil O"

Article Synopsis
  • * The study used the James Webb Space Telescope to analyze the planet-forming disk around ISO-ChaI 147, revealing a carbon-rich environment with 13 identified carbon-bearing molecules, such as ethane and benzene.
  • * Findings suggest that the high carbon-to-oxygen ratio and presence of hydrocarbons in the disk could influence the chemical makeup of any planets that form there due to material movement within the disk.
View Article and Find Full Text PDF

WASP-107b is a warm (approximately 740 K) transiting planet with a Neptune-like mass of roughly 30.5 M and Jupiter-like radius of about 0.94 R (refs.

View Article and Find Full Text PDF

Brown dwarfs serve as ideal laboratories for studying the atmospheres of giant exoplanets on wide orbits, as the governing physical and chemical processes within them are nearly identical. Understanding the formation of gas-giant planets is challenging, often involving the endeavour to link atmospheric abundance ratios, such as the carbon-to-oxygen (C/O) ratio, to formation scenarios. However, the complexity of planet formation requires further tracers, as the unambiguous interpretation of the measured C/O ratio is fraught with complexity.

View Article and Find Full Text PDF

Terrestrial and sub-Neptune planets are expected to form in the inner (less than 10 AU) regions of protoplanetary disks. Water plays a key role in their formation, although it is yet unclear whether water molecules are formed in situ or transported from the outer disk. So far Spitzer Space Telescope observations have only provided water luminosity upper limits for dust-depleted inner disks, similar to PDS 70, the first system with direct confirmation of protoplanet presence.

View Article and Find Full Text PDF

The understanding of planet formation has changed recently, embracing the new idea of pebble accretion. This means that the influx of pebbles from the outer regions of planet-forming disks to their inner zones could determine the composition of planets and their atmospheres. The solid and molecular components delivered to the planet-forming region can be best characterized by mid-infrared spectroscopy.

View Article and Find Full Text PDF

Vortex phase masks have been shown to be an efficient means to reduce the blinding stellar light in high-contrast imaging instruments. Once placed at the focal plane of the telescope, the helical phase ramp of a vortex phase mask diffracts the light of a bright on-axis source outside the re-imaged telescope pupil, while transmitting the light of a faint off-axis companion nearly unaffected. The Annular Groove Phase Mask (AGPM) is a broadband metasurface implementation of a vector vortex phase mask using the artificial birefringence of a circular subwavelength grating etched onto a diamond substrate.

View Article and Find Full Text PDF

Exoplanet science is one of the most thriving fields of modern astrophysics. A major goal is the atmospheric characterization of dozens of small, terrestrial exoplanets in order to search for signatures in their atmospheres that indicate biological activity, assess their ability to provide conditions for life as we know it, and investigate their expected atmospheric diversity. None of the currently adopted projects or missions, from ground or in space, can address these goals.

View Article and Find Full Text PDF

Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8 m class telescopes. The vAPP is a geometric-phase patterned coronagraph that is inherently broadband, and its manufacturing is enabled only by direct-write technology for liquid-crystal patterns. The vAPP generates two coronagraphic point spread functions (PSFs) that cancel starlight on opposite sides of the PSF and have opposite circular polarization states.

View Article and Find Full Text PDF

Giant exoplanets on wide orbits have been directly imaged around young stars. If the thermal background in the mid-infrared can be mitigated, then exoplanets with lower masses can also be imaged. Here we present a ground-based mid-infrared observing approach that enables imaging low-mass temperate exoplanets around nearby stars, and in particular within the closest stellar system, α Centauri.

View Article and Find Full Text PDF

Subwavelength gratings are gratings with periods smaller than the incident wavelength. They possess form birefringence, which depends on the grating parameters. This paper presents the results of an experimental method designed to measure the birefringent properties of diamond subwavelength gratings in the mid-infrared.

View Article and Find Full Text PDF

In this paper, we present a solution for creating robust monolithic achromatic half-wave plates (HWPs) for the infrared, based on the form birefringence of subwavelength gratings (SWGs) made out of diamond. We use the rigorous coupled wave analysis to design the gratings. Our analysis shows that diamond, besides its outstanding physical and mechanical properties, is a suitable substrate to manufacture mid-infrared HWPs, thanks to its high refractive index, which allows etching SWGs with lower aspect ratio.

View Article and Find Full Text PDF

The direct detection of Earth-like exoplanets orbiting nearby stars and the characterization of such planets-particularly, their evolution, their atmospheres, and their ability to host life-constitute a significant problem. The quest for other worlds as abodes of life has been one of mankind's great questions for several millennia. For instance, as stated by Epicurus approximately 300 BC: "Other worlds, with plants and other living things, some of them similar and some of them different from ours, must exist.

View Article and Find Full Text PDF

The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life.

View Article and Find Full Text PDF

We revisit the nulling interferometer performances that are needed for direct detection and the spectroscopic analysis of exoplanets, e.g., with the DARWIN [European Space Agency-SCI 12 (2000)] or TPF-I [JPL Publ.

View Article and Find Full Text PDF