Patients are complex and heterogeneous; clinical data sets are complicated by noise, missing data, and the presence of mixed-type data. Using such data sets requires understanding the high-dimensional "space of patients", composed of all measurements that define all relevant phenotypes. The current state-of-the-art merely defines spatial groupings of patients using cluster analyses.
View Article and Find Full Text PDFIn chronic lymphocytic leukemia (CLL), epigenetic alterations are considered to centrally shape the transcriptional signatures that drive disease evolution and underlie its biological and clinical subsets. Characterizations of epigenetic regulators, particularly histone-modifying enzymes, are very rudimentary in CLL. In efforts to establish effectors of the CLL-associated oncogene T-cell leukemia 1A (TCL1A), we identified here the lysine-specific histone demethylase KDM1A to interact with the TCL1A protein in B cells in conjunction with an increased catalytic activity of KDM1A.
View Article and Find Full Text PDFFluorescence in situ hybridization (FISH) to detect the recurrent cytogenetics abnormalities deletion 13q, trisomy 12, deletion 11q, and deletion 17p is important for prognostication in chronic lymphocytic leukemia (CLL). A subset of patients are negative for each of these abnormalities (normal 12/13/11/17 FISH), and outcomes are heterogenous within this group. To elucidate variables important for prognostication in this subgroup we conducted a retrospective analysis of 280 treatment-naïve CLL patients with normal standard CLL FISH results.
View Article and Find Full Text PDFThe use of genomics in medicine is expanding rapidly, but information systems are lagging in their ability to support genomic workflows both from the laboratory and patient-facing provider perspective. The complexity of genomic data, the lack of needed data standards, and lack of genomic fluency and functionality as well as several other factors have contributed to the gaps between genomic data generation, interoperability, and utilization. These gaps are posing significant challenges to laboratory and pathology professionals, clinicians, and patients in the ability to generate, communicate, consume, and use genomic test results.
View Article and Find Full Text PDFSummary: Cytogenetics data, or karyotypes, are among the most common clinically used forms of genetic data. Karyotypes are stored as standardized text strings using the International System for Human Cytogenomic Nomenclature (ISCN). Historically, these data have not been used in large-scale computational analyses due to limitations in the ISCN text format and structure.
View Article and Find Full Text PDFComplex karyotype, defined as ≥3 cytogenetic abnormalities, is prognostic of survival in patients treated with ibrutinib or venetoclax in relapsed/refractory (RR) chronic lymphocytic leukemia (CLL). Recent studies re-evaluating this dichotomous variable have shown that higher numbers of cytogenetic abnormalities (ie, ≥5) have a worse overall survival in patients treated with chemoimmunotherapy. We sought to determine if increasing karyotypic complexity, treated as a continuous variable, was prognostic of survival for patients treated with ibrutinib for CLL.
View Article and Find Full Text PDFHematopoiesis is hierarchical, and it has been postulated that acute myeloid leukemia (AML) is organized similarly with leukemia stem cells (LSCs) residing at the apex. Limited cells acquired by fluorescence activated cell sorting in tandem with targeted amplicon-based sequencing (LC-FACSeq) enables identification of mutations in small subpopulations of cells, such as LSCs. Leveraging this, we studied clonal compositions of immunophenotypically-defined compartments in AML through genomic and functional analyses at diagnosis, remission and relapse in 88 AML patients.
View Article and Find Full Text PDFBackground: There have been many recent breakthroughs in processing and analyzing large-scale data sets in biomedical informatics. For example, the CytoGPS algorithm has enabled the use of text-based karyotypes by transforming them into a binary model. However, such advances are accompanied by new problems of data sparsity, heterogeneity, and noisiness that are magnified by the large-scale multidimensional nature of the data.
View Article and Find Full Text PDFBackground: Exportin 1 (XPO1/CRM1) is a key mediator of nuclear export with relevance to multiple cancers, including chronic lymphocytic leukemia (CLL). Whole exome sequencing has identified hot-spot somatic XPO1 point mutations which we found to disrupt highly conserved biophysical interactions in the NES-binding groove, conferring novel cargo-binding abilities and forcing cellular mis-localization of critical regulators. However, the pathogenic role played by change-in-function XPO1 mutations in CLL is not fully understood.
View Article and Find Full Text PDFKaryotyping, the practice of visually examining and recording chromosomal abnormalities, is commonly used to diagnose diseases of genetic origin, including cancers. Karyotypes are recorded as text written in the International System for Human Cytogenetic Nomenclature (ISCN). Downstream analysis of karyotypes is conducted manually, due to the visual nature of analysis and the linguistic structure of the ISCN.
View Article and Find Full Text PDFPurpose: The development of highly effective targeted agents for chronic lymphocytic leukemia offers the potential for fixed-duration combinations that achieve deep remissions without cytotoxic chemotherapy.
Patients And Methods: This phase II study tested a combination regimen of obinutuzumab, ibrutinib, and venetoclax for a total of 14 cycles in both patients with treatment-naïve (n = 25) and relapsed or refractory (n = 25) chronic lymphocytic leukemia to determine the response to therapy and safety.
Results: The primary end point was the rate of complete remission with undetectable minimal residual disease by flow cytometry in both the blood and bone marrow 2 months after completion of treatment, which was 28% in both groups.
We aimed to describe the impact of time to response on the outcomes of 75 patients with accelerated-phase chronic myeloid leukemia (CML-AP) at diagnosis. Patients had at least 1 feature of AP: blasts ≥15% (n = 2), basophils ≥20% (n = 19), platelets <100 × 10 /L (n = 7), cytogenetic clonal evolution (n = 34), or more than one factor (n = 13). Thirty-three patients received imatinib; 42 received a second-generation tyrosine kinase inhibitor (2GTKI) (19 dasatinib and 23 nilotinib).
View Article and Find Full Text PDFObjective: Unsupervised machine learning approaches hold promise for large-scale clinical data. However, the heterogeneity of clinical data raises new methodological challenges in feature selection, choosing a distance metric that captures biological meaning, and visualization. We hypothesized that clustering could discover prognostic groups from patients with chronic lymphocytic leukemia, a disease that provides biological validation through well-understood outcomes.
View Article and Find Full Text PDFBackground: Fludarabine, cyclophosphamide, and rituximab (FCR) has become a gold-standard chemoimmunotherapy regimen for patients with chronic lymphocytic leukaemia. However, the question remains of how to treat treatment-naive patients with IGHV-unmutated chronic lymphocytic leukaemia. We therefore aimed to develop and validate a gene expression signature to identify which of these patients are likely to achieve durable remissions with FCR chemoimmunotherapy.
View Article and Find Full Text PDFAlterations in global DNA methylation patterns are a major hallmark of cancer and represent attractive biomarkers for personalized risk stratification. Chronic lymphocytic leukemia (CLL) risk stratification studies typically focus on time to first treatment (TTFT), time to progression (TTP) after treatment, and overall survival (OS). Whereas TTFT risk stratification remains similar over time, TTP and OS have changed dramatically with the introduction of targeted therapies, such as the Bruton tyrosine kinase inhibitor ibrutinib.
View Article and Find Full Text PDFSummary: Karyotype data are the most common form of genetic data that is regularly used clinically. They are collected as part of the standard of care in many diseases, particularly in pediatric and cancer medicine contexts. Karyotypes are represented in a unique text-based format, with a syntax defined by the International System for human Cytogenetic Nomenclature (ISCN).
View Article and Find Full Text PDFMotivation: Clonal heterogeneity is common in many types of cancer, including chronic lymphocytic leukemia (CLL). Previous research suggests that the presence of multiple distinct cancer clones is associated with clinical outcome. Detection of clonal heterogeneity from high throughput data, such as sequencing or single nucleotide polymorphism (SNP) array data, is important for gaining a better understanding of cancer and may improve prediction of clinical outcome or response to treatment.
View Article and Find Full Text PDFBackground: Transcription factors are essential regulators of gene expression and play critical roles in development, differentiation, and in many cancers. To carry out their regulatory programs, they must cooperate in networks and bind simultaneously to sites in promoter or enhancer regions of genes. We hypothesize that the mRNA co-expression patterns of transcription factors can be used both to learn how they cooperate in networks and to distinguish between cancer types.
View Article and Find Full Text PDFAlthough trisomy 12 (+12) chronic lymphocytic leukemia (CLL) comprises about 20% of cases, relatively little is known about its pathophysiology. These cases often demonstrate atypical morphological and immunophenotypic features, high proliferative rates, unmutated immunoglobulin heavy chain variable region genes, and a high frequency of mutation. Patients with +12 CLL have an intermediate prognosis, and show higher incidences of thrombocytopenia, Richter transformation, and other secondary cancers.
View Article and Find Full Text PDF