Publications by authors named "Abrar U Hassan"

This study investigates the electronic properties and photovoltaic (PV) performance of newly designed bithiophene-based dyes, focusing on their light harvesting efficiency (LHE), open-circuit voltage (V), fill factor (FF), and short-circuit current density (J).These new dyes are designed with the help of machine learning (ML) to design best donor acceptor designs. For this, we collect 2567 differenr electron donor groups and calculated their bandgap with the help of Random Forest (RF) Regression method.

View Article and Find Full Text PDF

In this research, molecular modification is employed to see the enhancement in the efficiency of Tyrian Purple (TP), a natural dye, for organic photovoltaic materials. By using Density Functional Theory (DFT) based molecular modeling, seven new structures are designed with pi spacer to extend electron donor moieties. Teheir Frontier Molecular Orbital (FMO) analysis demonstartes their charges with a similar pattern of distributions over their Highest Occupied and Lowed Unocuupied Molecular Orbitals (HOMO/lUMO).

View Article and Find Full Text PDF

Modern technological breakthroughs depend on nonlinear optical (NLO) and photovoltaic (PV) materials, essential for creating advanced photonic devices and efficient solar cells. Herein, the NLO, PV, electrical, and photophysical characteristics of proposed chromophores (WLK-1-WLK-6) designed from pyridoquinazolindone-containing triphenylamine have been systematically altered by the addition of different spacers categorized as K1, K2, K3, K4, K5, and K6 (named as i-series). This fine-tuning was accomplished using TD-DFT, DFT computations, and the Scharber model.

View Article and Find Full Text PDF

Understanding the intricacies of polymorphic origins in nonconjugated crystal systems is crucial for optimizing their properties. This study focuses on the crystal growth, characterization, and nonlinear optical (NLO) responses of a system analyzed using single crystal X-ray analysis, revealing a monoclinic geometry. Hirschfeld surface analysis emphasized the significance of intermolecular interactions in driving polymorph development, shedding light on the structural nuances influencing the material's properties.

View Article and Find Full Text PDF

Context: Dye-sensitized solar cells (DSSCs) present a convincing substitute for conventional silicon-based solar cells because of their possible lower manufacturing costs and versatile uses. Electron injection and dye regeneration processes are important in meeting the need for photosensitizers with improved efficiency and stability. Aimed at enhancing the performance and efficiency of DSSCs, this study focuses on the structural engineering to performance metrics of novel indoline-benzo[d][1,2,3]thiadiazole based push-pull sensitizers (LHZ1 to LHZ9) with D-D-A-π-A framework.

View Article and Find Full Text PDF

This study investigates the tuning of the UV-Vis/NIR absorption bands of pyrazine-based A-D-A switches for designing efficient UV retardancy over TiO surfaces. The electronic properties and optical characteristics of seven dyes (DP1-DP7) were analyzed using computational methods. The results indicate that the dyes possessed distinct UV-Vis/NIR absorption properties.

View Article and Find Full Text PDF

Context: For the first time, the use of monocyclic rings C and BN as sensors for the sensing of carbazole-based anti-cancer drugs, such as tetrahydrocarbazole (THC), mukonal (MKN), murrayanine (MRY), and ellipticine (EPT), is described using DFT simulations and computational characterization. The geometries, electronic properties, stability studies, sensitivity, and adsorption capabilities of C and BN counterparts towards the selected compounds confirm that the analytes interact through active cavities of the C and BN rings of the complexes.

Methods: Based on the interaction energies, the sensitivity of surfaces towards EPT, MKN, MRY, and THC analytes is observed.

View Article and Find Full Text PDF

Context: Due to their unique photophysical properties, organic charge transfer crystals are becoming promising materials for next-generation optoelectronic devices. This research paper explores the impact of s-block metals on a charge transfer crystal of indol-2-one for enhanced nonlinear optical (NLO) responses with efficient energetic offsets. The study reveals that alkali metals can enhance NLO performance due to their free electrons.

View Article and Find Full Text PDF

Context: This research aims to investigate the potential of pyrazine-based small donor moieties as donor-acceptor switches for optical and photovoltaic applications. The designed organic dyes have a high light harvesting efficiency (LHE) and can potentially generate significant electrical energy.

Methods: The study focuses on understanding the structural and electronic properties of these dyes through the analysis of dihedral angles, bond lengths, and energies of frontier molecular orbitals The UV-Vis spectroscopy parameters of the designed organic dyes revealed their absorption characteristics, including transition energies, wavelengths (λ), and oscillator strengths (f).

View Article and Find Full Text PDF

This research paper presents a comprehensive study on the design and photovoltaic parameters of azobenzene type 24 photo switches (PSs) of triazole by density functional theory (DFT). The focus was on investigating how to create a long-range push-pull effect of different substituents on the PS properties for their application in photovoltaics by further substituent decoration. Their range of values for the maximum wavelength (λ) ranged 315-556 nm while their HOMO-LUMO energies (E) were 0.

View Article and Find Full Text PDF

Deoxyribonucleic acid (DNA) acts as the most important intracellular target for various drugs. Exploring the DNA binding interactions of small bioactive molecules offers a structural guideline for designing new drugs with higher clinical efficacy and enhanced selectivity. This study presents the facile synthesis of pyrazoline-derived compounds by reacting substituted chalcones with hydrazine hydrate using formic acid.

View Article and Find Full Text PDF

Context: The organic solar cells (OSCs) are being developed with the goal of improving their photovoltaic capabilities. Here, utilizing computational methods, six new nonfullerene acceptors (NFA) comprising dyes (A1-A6) have been created by end-group alterations of the Y123 framework as a standard (R).

Methods: The DFT-based investigations at B3LYP/6-31G + (d,p) level were applied to evaluate their properties.

View Article and Find Full Text PDF

A series of new organic dyes (T1-T6) with nonfullerene acceptors have been theoretically designed around the chemical structure of tyrian purple (T) natural dye. For their ground state energy parameters, all the molecular geometries of those dyes were optimized by density functional theory (DFT) at its Becke, 3-parameter, Lee-Yang-Parr (B3LYP) level of theory with 6-31G+(d,p) basis sets. When benchmarking against several long range and range separated levels of theory, the Coulomb attenuated B3LYP (CAM-B3LYP) produced most accurate absorption maxima (λ) value to that of T so it was further employed for further Time dependent DFT (TD-DFT) calculations.

View Article and Find Full Text PDF

Context: In this study, new visible light harvesting dyes (MBR1-MBR5) have been designed as efficient materials with silyl based anchoring abilities on semiconducting units for future dye-solar cells applications. Their unique molecular structures of novel D-π-A type were evaluated thoroughly by density functional theory (DFT) calculations. To enhance the optical performance in visible region, a novel dye structure (MBR) was derived from the chemical structure of mordant black (MB) dye with electron acceptor semiconducting units (MBR1-MBR5).

View Article and Find Full Text PDF

The emergence of artemisinin-resistant variants of Plasmodium falciparum necessitates the urgent search for novel antimalarial drugs. In this regard, an in silico study to screen antimalarial drug candidates from a series of benzimidazole-thiosemicarbazone hybrid molecules with interesting antiplasmodial properties and explore their falcipain-2 (FP2) inhibitory potentials has been undertaken herein. FP2 is a key cysteine protease that degrades hemoglobin in Plasmodium falciparum and is an important biomolecular target in the development of antimalarial drugs.

View Article and Find Full Text PDF

Background: The organic dyes with non-fullerene acceptors (NFAs) have aided in the creation of competitive organic solar cells (OSCs) with long-term sustainability. A series of NFA dyes (IDIC-R1-IDIC-R9) have been designed by varying the end-capped fluorinated moieties (PD1-PD6) at indaceno (IDIC) core.

Methods: All the calculations were performed by density functional theory (DFT) and time-dependent DFT (TD-DFT)-based approaches.

View Article and Find Full Text PDF

Throughout the opto-electronic devices industry, organic materials with considerable nonlinear optical (NLO) capabilities are being used. By employing 4,6-di(thiophen-2-yl)pyrimidine as a standard molecule, a series for new dyes (DMBMB1-DMBMB6) are created in the present paper by altering their functionalization with various electron acceptor (A) functional groups. The density functional fheory (DFT) and time dependent DFT (TD-DFT) based calculations have been performed to explore NLO responses by adjustment of different A units.

View Article and Find Full Text PDF

The π-rich versus π-poor units in 4,6-di(thiophen-2-yl)pyrimidine (DTB) alternating the π-backbone of solar cells dyes have been extended with a push-pull technique to lower their HOMO-LUMO energy gap and to increase Intramolecular Charge Transfer (ICT). Density functional theory was used to optimize the ground state molecular geometries of newly designed dyes (DTB1-DTB6). Time Dependent DFT (TD-DFT) was used to simulate the Uv-vis spectral values at the maximum absorbance values ranging between 481-535 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Japanese chemists discovered a highly stable triplet diphenylcarbene called bis[3-bromo-5-(trifluoromethyl)[1,1'-biphenyl]-4-yl]methylidene (B3B) and analyzed its quantum chemical properties using Density Functional Theory (DFT) and Time Dependent-DFT (TD-DFT).
  • The study revealed that as nucleophilicity increases, both the singlet-triplet energy gap (ES-T) and energy bandgap (E) decrease, with detailed assessments conducted on molecular properties and electronic spectra across various solvents.
  • B3B exhibited characteristic absorption and fluorescence peaks in the UV-visible range, with shifts in
View Article and Find Full Text PDF

The present study advocates the combined experimental and computational study of metal-based aminothiazole-derived Schiff base ligands. The structure and electronic properties of ligands have been experimentally studied by spectroscopic methods (UV-Vis, FT-IR, H-NMR and C-NMR), mass spectrometry, elemental analysis and theoretically by density function theory (DFT). Computational calculations employing the B3LYP/6-31 + G(d,p) functional of DFT were executed to explore the optimized geometrical structures of ligands along with geometric parameters, molecular electrostatic potential (MEP) surfaces and frontier molecular orbital (FMO) energies.

View Article and Find Full Text PDF

During the present investigation, two new sulfonamide-based Schiff base ligands, 4-{[(2-hydroxy-3-methoxyphenyl)methylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L) and 4-{[1-(2-hydroxyphenyl)ethylidene]amino}-N-(1,3-thiazol-2-yl)benzene-1-sulfonamide (L), have been synthesized and coordinated with the transition metals (V, Fe, Co, Ni, Cu and Zn). The ligands were characterized by their physical (color, melting point, yield and solubility), spectral (UV-Vis, FT-IR, LC-MS, H NMR and C NMR) and elemental data. The structures of the metal complexes (1)-(12) were evaluated through their physical (magnetic and conductance), spectral (UV-Vis, FT-IR and LC-MS) and elemental data.

View Article and Find Full Text PDF