Photoresists are fundamental materials in photolithography and are crucial for precise patterning in microelectronic devices, MEMS, and nanostructures. This paper provides an in-depth review of recent advancements in positive photoresist research and development, focusing on discussion regarding the underlying mechanisms governing their behavior, exploring innovative fabrication techniques, and highlighting the advantages of the photoresist classes discussed. The paper begins by discussing the need for the development of new photoresist technologies, highlighting issues associated with adopting extreme ultraviolet photolithography and addressing these challenges through the development of advanced positive-tone resist materials with improved patterning features, resolution, and sensitivity.
View Article and Find Full Text PDFThis computational study investigates the effects of common defects that occur while fabricating arrays of plasmonic metal nanoparticles (NPs) on the absorbing layer of the solar cells for enhancing their opto-electronic performance. Several "defects" in an array of plasmonic NP arrays on solar cells were studied. The results demonstrated no major changes in the performance of solar cells in the presence of "defective" arrays when compared to a "perfect" array with defect-free NPs.
View Article and Find Full Text PDF