Publications by authors named "Abrar Islam"

. Intracranial pressure measurement (ICP) is an essential component of deriving of multivariate data metrics foundational to improving understanding of high temporal relationships in cerebral physiology. A significant barrier to this work is artifact ridden data.

View Article and Find Full Text PDF

Achieving achromaticity across the visible light spectrum is crucial for metalenses in imaging systems. Single-layer metalenses struggle with weak focusing power or small aperture sizes due to inadequate group delay control. Multilayer metalenses offer some improvement but come with increased design and fabrication complexity.

View Article and Find Full Text PDF

Neurointensive care primarily focuses on secondary injury reduction, utilizing a variety of guideline-based approaches (including administration of high-dose sedation) to reduce the injured state. However, titration of sedation is currently based on the Richmond Agitation Sedation Scale (RASS), a subjective clinical grading score of a patient's response to external physical stimuli, and not an objective measure. Therefore, it is likely that there exists substantial variation in objective sedation depth for a given clinical grade in these patients, leading to undesired sedation depths and cerebral physiological consequences.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) is a major cause of global death and disability, and tracking cerebral compliance is essential for timely treatment.
  • The review analyzed 21 studies focusing on the relationship between the RAP index—indicating brain function and status—and various monitoring techniques, neuroimaging, and long-term patient outcomes.
  • It categorized RAP into three states, revealing that state 1 indicates a healthy brain, state 2 suggests compromised function in TBI patients, and state 3 shows severe decline, often correlating with higher mortality rates.
View Article and Find Full Text PDF

Artifacts induced during patient monitoring are a main limitation for near-infrared spectroscopy (NIRS) as a non-invasive method of cerebral hemodynamic monitoring. There currently does not exist a robust "gold-standard" method for artifact management for these signals. The objective of this review is to comprehensively examine the literature on existing artifact management methods for cerebral NIRS signals recorded in animals and humans.

View Article and Find Full Text PDF

Global outcomes have been reported to be associated with cerebrovascular reactivity (CVR) in the acute phase following moderate and severe traumatic brain injury (TBI). The association of CVR in the acute and chronic phase of injury with patient-reported health-related quality of life metrics (HRQOL) metrics has never been explored. The aim of this study is to examine the association of CVR, as measured by the cerebral oxygen indices (COx and COx_a), in the acute and chronic phase following moderate and severe TBI, with patient reported HRQOL.

View Article and Find Full Text PDF

Cerebrovascular pressure reactivity plays a key role in maintaining constant cerebral blood flow. Unfortunately, this mechanism is often impaired in acute traumatic neural injury states, exposing the already injured brain to further pressure-passive insults. While there has been much work on the association between impaired cerebrovascular reactivity following moderate/severe traumatic brain injury (TBI) and worse long-term outcomes, there is yet to be a comprehensive review on the association between cerebrovascular pressure reactivity and intracranial pressure (ICP) extremes.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) poses a significant global public health challenge necessitating a profound understanding of cerebral physiology. The dynamic nature of TBI demands sophisticated methodologies for modeling and predicting cerebral signals to unravel intricate pathophysiology and predict secondary injury mechanisms prior to their occurrence. In this comprehensive scoping review, we focus specifically on multivariate cerebral physiologic signal analysis in the context of multi-modal monitoring (MMM) in TBI, exploring a range of techniques including multivariate statistical time-series models and machine learning algorithms.

View Article and Find Full Text PDF

Continuous monitoring of cerebrospinal compliance (CC)cerebrospinal compensatory reserve (CCR) is crucial for timely interventions and preventing more substantial deterioration in the context of acute neural injury, as it enables the early detection of abnormalities in intracranial pressure (ICP). However, to date, the literature on continuous CC/CCR monitoring is scattered and occasionally challenging to consolidate.We subsequently conducted a systematic scoping review of the human literature to highlight the available continuous CC/CCR monitoring methods.

View Article and Find Full Text PDF

Near-infrared spectroscopy (NIRS) regional cerebral oxygen saturation (rSO)-based cerebrovascular reactivity (CVR) monitoring has enabled entirely non-invasive, continuous monitoring during both acute and long-term phases of care. To date, long-term post-injury CVR has not been properly characterized after acute traumatic neural injury, also known as traumatic brain injury (TBI). This study aims to compare CVR in those recovering from moderate-to-severe TBI with a healthy control group.

View Article and Find Full Text PDF

The modeling and forecasting of cerebral pressure-flow dynamics in the time-frequency domain have promising implications for veterinary and human life sciences research, enhancing clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence regarding the optimal model type, structure, data streams, and performance. This systematic scoping review comprehensively examines the current landscape of cerebral physiological time-series modeling and forecasting.

View Article and Find Full Text PDF

The contemporary monitoring of cerebrovascular reactivity (CVR) relies on invasive intracranial pressure (ICP) monitoring which limits its application. Interest is shifting towards near-infrared spectroscopic regional cerebral oxygen saturation (rSO)-based indices of CVR which are less invasive and have improved spatial resolution. This study aims to examine and model the relationship between ICP and rSO-based indices of CVR.

View Article and Find Full Text PDF

Regional cerebral oxygen saturation (rSO), a method of cerebral tissue oxygenation measurement, is recorded using non-invasive near-infrared Spectroscopy (NIRS) devices. A major limitation is that recorded signals often contain artifacts. Manually removing these artifacts is both resource and time consuming.

View Article and Find Full Text PDF

Background: Optimal cerebral perfusion pressure (CPPopt) has emerged as a promising personalized medicine approach to the management of moderate-to-severe traumatic brain injury (TBI). Though literature demonstrating its association with poor outcomes exists, there is yet to be work done on its association with outcome transition due to a lack of serial outcome data analysis. In this study we investigate the association between various metrics of CPPopt and failure to improve in outcome over time.

View Article and Find Full Text PDF

We conceptualized and numerically investigated a photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) sensor for rapid detection and quantification of novel coronavirus. The plasmonic gold-based optical sensor permits three different ways to quantify the virus concentrations inside patient's body based on different ligand-analyte conjugate pairs. This photonic biosensor demonstrates viable detections of SARS-CoV-2 spike receptor-binding-domain (RBD), mutated viral single-stranded ribonucleic acid (RNA) and human monoclonal antibody immunoglobulin G (IgG).

View Article and Find Full Text PDF