Developmental programming of hypertension is associated with vascular dysfunction characterized by impaired vasodilatation to nitric oxide, exaggerated vasoconstriction to ANG II, and microvascular rarefaction appearing in the neonatal period. Hypertensive adults have indices of increased oxidative stress, and newborns that were nutrient depleted during fetal life have decreased antioxidant defenses and increased susceptibility to oxidant injury. To test the hypothesis that oxidative stress participates in early life programming of hypertension, vascular dysfunction, and microvascular rarefaction associated with maternal protein deprivation, pregnant rats were fed a normal, low protein (LP), or LP plus lazaroid (lipid peroxidation inhibitor) isocaloric diet from the day of conception until delivery.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
December 2005
In hypertension, increased peripheral vascular resistance results from vascular dysfunction with or without structural changes (vessel wall remodeling and/or microvascular rarefaction). Humans with lower birth weight exhibit evidence of vascular dysfunction. The current studies were undertaken to investigate whether in utero programming of hypertension is associated with in vivo altered response and/or abnormal vascular structure.
View Article and Find Full Text PDFOpposing effects have been ascribed to nitric oxide (NO) on retinal microvascular survival. We investigated whether changes in the redox state may contribute to explain apparent conflicting actions of NO in a model of oxygen-induced retinal vasoobliteration. Retinal microvascular obliteration was induced by exposing 7-day-old rat pups (P7) for 2 or 5 days to 80% O(2).
View Article and Find Full Text PDFIntrauterine programming of hypertension is associated with evidence of increased renin-angiotensin system (RAS) activity. The current study was undertaken to investigate whether arterial baroreflex and blood pressure variability are altered in a model of in utero programming of hypertension secondary to isocaloric protein deprivation and whether activation of the RAS plays a role in this alteration. Pregnant Wistar rats were fed a normal-protein (18%) or low-protein (9%) diet during gestation, which had no effect on litter size, birth weight, or pup survival.
View Article and Find Full Text PDFF2-isoprostanes (F2-IsoP's) are biologically active prostanoids formed by free radical-mediated peroxidation of arachidonic acid. Four different F2-IsoP regioisomers (5-, 8-, 12-, and 15-series), each comprising eight racemic diastereomers, total 64 compounds. Information regarding the biological activity of IsoP's is largely limited to 15-F2t-IsoP (8-iso-PGF2alpha).
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2004
The synthesis of PGE(2), the major vasodilator prostanoid of the ductus arteriosus (DA), is catalyzed by PGE(2) synthases (PGES). The factors implicated in increased PGE(2) synthesis in the perinatal DA are not known. We studied the developmental changes of PGES along with that of cyclooxygenase (COX)-2 and cytosolic phospholipase A(2) (cPLA(2)) in the DA of fetal (75-90% gestation) and immediately postnatal newborn (NB) piglets.
View Article and Find Full Text PDFJ Ocul Pharmacol Ther
February 2003
We determined whether bimatoprost, which has been reported to act via putative prostamide receptors, could be hydrolyzed to its free acid (17-phenyl-PGF(2 alpha)), a potent FP receptor agonist, by human ocular tissue in vitro. We developed a gas chromatography/mass spectrometric method to measure 17-phenyl-PGF(2 alpha) levels at sub-picomolar levels. We then analyzed the amount of 17-phenyl-PGF(2 alpha) present after incubation of 50 microl Lumigan (0.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
April 2003
Oxidant stress contributes to the pathogenesis of hypoxic-ischemic encephalopathies. Platelet-activating factor (PAF) is generated during oxidant stress. We studied the vasomotor mode of actions of PAF on periventricular (PV) microvessels of fetal ( approximately 75% of term), newborn (1-3 days), and adult pigs.
View Article and Find Full Text PDFPGF2alpha is an important smooth muscle contractile agent that exerts significant effects on myometrium and is implicated in labor. THG113 was recently identified as a PGF2alpha receptor (FP) antagonist. We characterized the specificity and selectivity of THG113, tested its effects on PGF2alpha-induced smooth muscle contraction, and assessed its efficacy in a model of endotoxin (LPS)-induced preterm labor.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
October 2002
Purpose: To test whether platelet-activating factor (PAF) directly causes retinovascular endothelial cell (EC) death.
Methods: Retinovascular density was calculated in rat pups exposed to 80% O(2) from postnatal days (P)6 to P14 (to produce oxygen-induced retinopathy [OIR]), using the adenosine diphosphatase (ADPase) technique, in animals treated with distinct PAF receptor blockers (PCA-4248, BN52021, or THG315). PAF levels were then measured in the retinas.
Purpose: Because prostaglandins (PGs) are implicated in acute hypercapnia-induced hyperemia, this study was conducted to test the hypothesis that prolonged hypercapnia may cause a sustained increase in retinal blood flow (RBF) through a PG-dependent induction of endothelial nitric oxide synthase (eNOS).
Methods: Time-dependent RBF (microsphere technique), PGE(2), nitrite (NO(2)(-)), and NOS protein (reduced nicotinamide adenine dinucleotide phosphate [NADPH]-diaphorase staining) production were measured in hypercapnia (6% CO(2))-treated piglets. From the same species, PGE(2), eNOS mRNA, NOS protein, and vasomotor responses were measured in eyecup preparations, as were Ca(2+) transients in neuroretinovascular endothelial cells.
Am J Physiol Regul Integr Comp Physiol
November 2001
Prostanoids exert significant effects on circulatory beds. They play a role in the response of the vasculature to adjustments in perfusion pressure and oxygen and carbon dioxide tension, and they mediate the actions of numerous factors. The role of prostanoids in governing circulation of the perinate is suggested to surpass that in the adult.
View Article and Find Full Text PDFJ Appl Physiol (1985)
October 2001
We examined whether nitric oxide (NO) generated from neuronal NO synthase (nNOS) contributes to the reduced ability of the newborn to autoregulate retinal blood flow (RBF) and choroidal blood flow (ChBF) during acute rises in perfusion pressure. In newborn pigs (1-2 days old), RBF (measured by microsphere) is autoregulated over a narrow range of perfusion pressure, whereas ChBF is not autoregulated. N(G)-nitro-L-arginine methyl ester (L-NAME) or specific nNOS inhibitors 7-nitroindazole, 3-bromo-7-nitroindazole, and 1-(2-trifluoromethyl-phenyl)imidazole as well as ganglionic blocker hexamethonium, unveiled a ChBF autoregulation as observed in juvenile (4- to 6-wk old) animals, whereas autoregulation of RBF in the newborn was only enhanced by L-NAME.
View Article and Find Full Text PDFMicrovascular degeneration is an important event in oxygen-induced retinopathy (OIR), a model of retinopathy of prematurity. Because oxidant stress abundantly generates thromboxane A2 (TxA2), we tested whether TxA2 plays a role in retinal vasoobliteration of OIR and contributes to such vascular degeneration by direct endothelial cytotoxicity. Hyperoxia-induced retinal vasoobliteration in rat pups (80% O2 exposure from postnatal days 5-14) was associated with increased TxB2 generation and was significantly prevented by TxA2 synthase inhibitor CGS-12970 (10 mg x kg(-1) x day(-1)) or TxA2-receptor antagonist CGS-22652 (10 mg x kg(-1) x day(-1)).
View Article and Find Full Text PDFWe studied the mechanisms of retinal and choroidal vasorelaxation elicited by nitric oxide (NO) using piglet eyes. The NO donors sodium nitroprusside (SNP) and diethylamine-NONOate caused comparable concentration-dependent relaxation that was partially (approximately 40%) attenuated by the guanylate cyclase inhibitors methylene blue and LY83583 and reduced to a lesser extent (approximately 25%) by the inhibitor of cGMP-dependent kinase, KT 5823. In contrast, NO-induced dilatation (by NO donors and endogenous NO after stimulation with bradykinin) was substantially (approximately 70%) diminished by the KCa channel blockers tetraethylammonium (TEA), charybdotoxin, and iberiotoxin; by the cyclooxygenase inhibitors indomethacin and ibuprofen; by the prostaglandin I (PGI2) synthase inhibitor trans-2-phenyl cyclopropylamine (TPC); and by the removal of endothelium; whereas relaxation of endothelium-denuded vasculature to SNP was unaltered by indomethacin, TPC, and charybdotoxin but was nearly nullified by methylene blue and the Kv channel blocker 4-aminopyridine.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 1998
Purpose: To determine the relative contribution of cyclooxygenase (COX)-1 and COX-2 in regulating prostaglandin (PG) E2 and PGF2alpha receptors (EP and FP, respectively) densities and their functions in retinal vasculature of neonatal pigs.
Methods: Newborn pigs were treated intravenously every 8 hours for 48 hours with saline, 40 mg/kg nonselective COX inhibitor ibuprofen, 80 mg/kg COX-1 inhibitor valeryl salicylate, or 5 mg/kg DuP697 and 5 mg/kg NS398, COX-2 inhibitors. Retinal microvessel EP and FP receptor densities were measured by radioligand binding and receptor-coupled effects by determining second-messenger inositol 1,4,5-trisphosphate (IP3) and vasomotor responses.
Ibuprofen, a cyclooxygenase (COX) inhibitor nonselective for either COX-1 or COX-2 isoform, upregulates cerebrovascular prostaglandin E2 (PGE2) and PGF2alpha receptors in newborn pigs. COX-2 was shown to be the predominant form of COX and the main catalyst of prostaglandin synthesis in the newborn brain. We proceeded to establish direct evidence that COX-2-generated prostaglandins govern PGE2 and PGF2alpha receptor density and function in the cerebral vasculature of the newborn.
View Article and Find Full Text PDFOntogenic changes in choroidal vascular prostaglandin E2 (PGE2) receptors (EP1, EP2, EP3, and EP4), changes in receptor-coupled functions, and the possible role of high perinatal prostaglandin levels in regulating expression and function of these receptors were studied. PGE2 receptors and their functions on choroidal tissues were characterized by radioligand binding; by measurements of second messengers to receptor stimulation; and by vasomotor response to EP1, EP2, EP3, and EP4 ligands on perfused choroidal vascular beds from saline- and ibuprofen-treated (40 mg/kg every 4 every 4 hours for 48 hours) newborn pigs and from adult animals. PGE2 as well as EP2- and EP4-attributed choroidal stimulation elicited greater vasorelaxation in the saline-treated newborn and was associated with higher nitrite (oxidation product of NO, N omega-nitro-L-arginine inhibitable) production than in adult tissues.
View Article and Find Full Text PDFThis study was conducted to determine if high perinatal prostaglandin (PG) and thromboxane (TxA2) levels modified their choroidal vasomotor effects and receptor levels. Both nonperfused (eyecup preparations) and perfused choroidal vessels from saline- or ibuprofen-treated 1-day-old pigs and tissues from adult pigs were used; all prostanoids produced similar vasomotor effects on both preparations. Choroidal PGF2alpha, TxA2, PGI2, and PGD2 levels were higher in the newborn than in adult pigs; injections of ibuprofen (40 mg/kg every 4 h for 48 h) into newborn pigs significantly decreased choroidal levels of all these prostanoids.
View Article and Find Full Text PDFProstaglandin G/H synthase (PGHS) has been shown to generate peroxides to a significant extent in the retina and absorbs light at the lower end of the visible spectrum. We postulated that PGHS could be an important initial source of peroxidation in the retina exposed to light, which would in turn alter retinal function. Exposure of pig eyes (in vivo) to light (350 fc/3770 lx) caused after 3 h a 50% increase and by 5 h a 30% decrease in a- and b-wave amplitudes of the electroretinogram (ERG) which were comparable at 380-650 nm and 380-440 nm but were not observed at wavelengths > 450 nm.
View Article and Find Full Text PDFWe performed open-circuit perfusions of newborn and adult pig eyes to study the age-dependent metabolism of 4,7,10,13,16,19-docosahexaenoic acid (DHA) in this organ. DHA taken up by the perfused eyes was partitioned into glycerolipids, beta-oxidation, and the intracellular nonesterified fatty acid pool. In newborn eyes, DHA was incorporated into structural lipids to a greater extent than in adult eyes.
View Article and Find Full Text PDFWe recently reported that the density of prostaglandin (PG) F2 alpha and E2 receptors (FP and EP) on the cerebral microvasculature of the newborn is less than on that of the adult animal. This study tests the hypothesis that higher levels of PGF2 alpha and PGE2 in the newborn than in the adult brain might down-regulate FP and EP and their functions in the cerebral microvasculature. Newborn pigs (1-2 days old) were treated with ibuprofen (40 mg/kg i.
View Article and Find Full Text PDFThe density of PGF2 alpha (FP) and PGE2 (EP) receptors on the cerebral microvasculature of the newborn is less than on that of the adult animal. High levels of prostaglandins in the newborn brain could be responsible for down-regulation of FP and EP receptors and their functions in the cerebral microvasculature. Cerebrovascular FP and EP receptor density, receptor-coupled second messenger production and cerebral vasoconstrictor responses to PGF2 alpha and PGE2 were studied in newborn pigs (1 to 2 days old) treated intravenously with ibuprofen (40 mg/kg every 6 hours for 48 hours) or saline, and compared with adults.
View Article and Find Full Text PDFProstaglandins exert significant effects on the range of cerebral blood flow autoregulation. However, the newborn exhibits a narrow cerebral blood flow autoregulatory range compared to the adult, and this apparently contributes to the susceptibility of the newborn to major perinatal complications such as intraventricular cerebral haemorrhage. Reduced vasoconstriction in response to prostaglandins due to the fewer prostaglandin receptors, especially for PGE2 (EP) and PGF2 alpha (FP), seems to contribute in part to the narrower range of cerebral blood flow autoregulation in the newborn.
View Article and Find Full Text PDF