Publications by authors named "Abramowski V"

Sickle cell disease and β-thalassemia affect the production of the adult β-hemoglobin chain. The clinical severity is lessened by mutations that cause fetal γ-globin expression in adult life (i.e.

View Article and Find Full Text PDF

We developed an separation of function mouse line to overcome the embryonic lethality of Xrcc4-deficient mice. XRCC4 protein does not interact with Xlf, thus obliterating XRCC4-Xlf filament formation while preserving the ability to stabilize DNA ligase IV. X4 mice, which are DNA repair deficient, phenocopy the (known as -/-) setting with a minor impact on the development of the adaptive immune system.

View Article and Find Full Text PDF

Repair of DNA double-strand breaks by the nonhomologous end joining pathway is central for proper development of the adaptive immune system. This repair pathway involves eight factors, including XRCC4-like factor (XLF)/Cernunnos and the paralog of XRCC4 and XLF, PAXX nonhomologous end joining factor (PAXX). Xlf and Paxx mice are viable and exhibit only a mild immunophenotype.

View Article and Find Full Text PDF

Xlf/Cernunnos is unique among the core factors of the non-homologous end joining (NHEJ) DNA double strand breaks (DSBs) repair pathway, in the sense that it is not essential for V(D)J recombination and . Unlike other NHEJ deficient mice showing a SCID phenotype, mice present a unique immune phenotype with a moderate B- and T-cell lymphopenia, a decreased cellularity in the thymus, and a characteristic TCRα repertoire bias associated with the P53-dependent apoptosis of CD4+CD8+ DP thymocytes. Here, we thoroughly analyzed mice immune phenotype and showed that it is specifically related to the DP stage but independent of the MHC-driven antigen presentation and T-cell activation during positive selection.

View Article and Find Full Text PDF
Article Synopsis
  • The repair of DNA double-stranded breaks via non-homologous end joining (NHEJ) is essential for developing the brain and immune system in mice.
  • Mice lacking either Xlf or PAXX can survive, showing mild immune changes, but are sensitive to radiation exposure, indicating these factors help in NHEJ.
  • However, mice missing both Xlf and PAXX die during embryonic development due to severe neuron death and show significant impairment in B- and T-cell maturation, underscoring the critical role of both factors in NHEJ during development.
View Article and Find Full Text PDF

XRCC4-like factor (XLF) functions in classical non-homologous end-joining (cNHEJ) but is dispensable for the repair of DNA double-strand breaks (DSBs) generated during V(D)J recombination. A long-standing hypothesis proposes that, in addition to its canonical nuclease activity, the RAG1/2 proteins participate in the DNA repair phase of V(D)J recombination. Here we show that in the context of RAG2 lacking the C-terminus domain (Rag2(c/c) mice), XLF deficiency leads to a profound lymphopenia associated with a severe defect in V(D)J recombination and, in the absence of p53, increased genomic instability at V(D)J sites.

View Article and Find Full Text PDF

Artemis is a factor of the non-homologous end joining pathway involved in DNA double-strand break repair that has a critical role in V(D)J recombination. Mutations in DCLRE1C/ARTEMIS gene result in radiosensitive severe combined immunodeficiency in humans owing to a lack of mature T and B cells. Given the known drawbacks of allogeneic hematopoietic stem cell transplantation (HSCT), gene therapy appears as a promising alternative for these patients.

View Article and Find Full Text PDF

Cernunnos is a DNA repair factor of the nonhomologous end-joining machinery. Its deficiency in humans causes radiosensitive severe combined immune deficiency (SCID) with microcephaly, characterized in part by a profound lymphopenia. In contrast to the human condition, the immune system of Cernunnos knockout (KO) mice is not overwhelmingly affected.

View Article and Find Full Text PDF

Nonhomologous end-joining DNA repair factors, including Artemis, are all required for the repair of DNA double-strand breaks, which occur during the assembly of the variable antigen recognition domain of B-cell receptors and T-cell receptors through the V(D)J recombination. Mature B cells further shape their immunoglobulin repertoire on antigen recognition notably through the class switch recombination (CSR) process. To analyze the role of Artemis during CSR, we developed a mature B-cell-specific Artemis conditional knockout mouse to bypass the absence of B cells caused by its early deficit.

View Article and Find Full Text PDF

The immune system is the site of intense DNA damage/modification, which occur during the development and maturation of B and T lymphocytes. V(D)J recombination is initiated by the Rag1 and Rag2 proteins and the formation of a DNA double-strand break (DNA dsb). This DNA lesion is repaired through the use of the non-homologous end-joining (NHEJ) pathway, several factors of which have been identified through the survey of immunodeficient conditions in humans and mice.

View Article and Find Full Text PDF

B and T lymphocytes are exposed to various genotoxic stresses during their life, which originate from programmed molecular mechanisms during their development and maturation or are secondary to cellular metabolism during acute phases of cell proliferation and activation during immune responses. How lymphocytes handle these multiple genomic assault has become a focus of interest over the years, perhaps beginning with the identification of the murine scid model in the early 80s when it was recognized that DNA repair deficiencies had profound consequences on the immune system. In this respect, the immune system represents an ideal model to study DNA damage responses (DDR) and the survey of immune deficiency conditions in humans or the development of specific animal models provided many major contributions in our understanding of the various biochemical pathways at play during DDR in general.

View Article and Find Full Text PDF

V(D)J recombination and immunoglobulin class switch recombination (CSR) are two somatic rearrangement mechanisms that proceed through the introduction of double-strand breaks (DSBs) in DNA. Although the DNA repair factor XRCC4 is essential for the resolution of DNA DSB during V(D)J recombination, its role in CSR has not been established. To bypass the embryonic lethality of XRCC4 deletion in mice, we developed a conditional XRCC4 knockout (KO) using LoxP-flanked XRCC4 cDNA lentiviral transgenesis.

View Article and Find Full Text PDF

Human malignant mesothelioma (HMM) is an aggressive malignancy mainly caused by exposure to asbestos fibers. Here we investigated tumor suppressor genes in mesothelioma cells from tumoral ascites developed in mice exposed to asbestos (asb) fibers and in 12 HMM cell cultures. Mutations in Nf2, p16/Cdkn2a, p19/Arf and Trp53 genes and protein expression of p15/Cdkn2b and Cdk4 were analyzed in 12 cultures from mice hemizygous for Nf2 (asb-Nf2(KO3/+)) and 4 wild type counterparts (asb-Nf2(+/+)).

View Article and Find Full Text PDF

Previously, we have mimicked human neurofibromatosis type 2 (NF2) in conditional Nf2 mutant (P0Cre;Nf2flox2/flox2) mice. Schwannomas, characteristic for NF2, were found at low frequency in older mice. Here, we report that these mice, upon additional hemizygosity for p53, rapidly develop multiple tumours showing features consistent with malignant peripheral nerve sheath tumours.

View Article and Find Full Text PDF

Biallelic NF2 gene inactivation is frequently found in human malignant mesothelioma. In order to assess whether NF2 hemizygosity may enhance susceptibility to asbestos fibres, we investigated the Nf2 status in mesothelioma developed in mice presenting a heterozygous mutation of the Nf2 gene (Nf2(KO3/+)), after intraperitoneal inoculation of crocidolite fibres. Asbestos-exposed Nf2(KO3/+) mice developed tumoural ascites and mesothelioma at a higher frequency than their wild-type (WT) counterparts (P&<0.

View Article and Find Full Text PDF

Background: Human malignant mesotheliomas (HMMs) are aggressive tumors that arise from the mesothelium. They respond poorly to conventional tumor treatment and outcome is often fatal. Inactivating mutations of the neurofibromatosis type 2 (NF2) tumor suppressor gene merlin have been described in nearly 60% of primary malignant mesothelioma and in approximately 20% of the mesothelioma cell lines.

View Article and Find Full Text PDF

Biallelic NF2 gene inactivation is common in sporadic and in neurofibromatosis type 2 (NF2)-related meningiomas. We show that, beginning at four months of age, thirty percent of mice with arachnoidal cell Cre-mediated excision of Nf2 exon 2 developed a range of meningioma subtypes histologically similar to the human tumors. Additional hemizygosity for p53 did not modify meningioma frequency or progression suggesting that Nf2 and p53 mutations do not synergize in meningeal tumorigenesis.

View Article and Find Full Text PDF

Hemizygosity for the NF2 gene in humans causes a syndromic susceptibility to schwannoma development. However, Nf2 hemizygous mice do not develop schwannomas but mainly osteosarcomas. In the tumors of both species, the second Nf2 allele is inactivated.

View Article and Find Full Text PDF

The region of chromosome 21 between genes CBR and ERG (CBR-ERG region), which spans 2.5 Mb on 21q22.2, has been defined by analysis of patients with partial trisomy 21.

View Article and Find Full Text PDF

The simplest field-flow fractionation technique, i.e. gravitational, was used in an attempt to purify a Pneumocystis carinii cyst suspension.

View Article and Find Full Text PDF