Publications by authors named "Abrahamson E"

Background: [F]MK-6240 was developed for PET imaging of AD tau pathology, but the exact molecular signature of specific binding remains unclear. This study quantified levels of four phospho-tau forms and total tau in postmortem brain tissues from [F]MK-6240 imaged cases to investigate associations with antemortem [F]MK-6240 PET.

Methods: This study included four participants from the Wisconsin ADRC or WRAP with antemortem [F]MK-6240 and [C]PiB PET imaging and postmortem brain tissue obtained on average 32-months after imaging (Table 1).

View Article and Find Full Text PDF

Background: Specific PSEN1 mutations cause early-onset AD but their effects on blood biomarker levels are unknown. We evaluated autopsy-confirmed individuals affected by six different PSEN1 mutations; two of known (L381V, C410Y) and three (A426P/E318G, M233L, and V261I) of unknown pathogenic status. The sixth patient had Autosomal Dominant AD (ADAD) not yet genotyped.

View Article and Find Full Text PDF

Background: Plasma phospho-tau217 (p-tau217) is a promising blood-based biomarkers for Alzheimer's disease (AD). However, the accessibility of pTau217 tests for both research and clinical applications has been constrained. Previous studies focused on highly-phenotyped cohorts that differ substantially from the wider population.

View Article and Find Full Text PDF

Background: Phosphorylated tau proteins accumulate in pathological aggregates which define neurodegenerative tauopathies, including Alzheimer's disease (AD). Insight into the early stages of tau polymerization/aggregation, including early hyperphosphorylation events, is critical for identification of biomarkers of incipient disease as well as novel therapy targets.

Method: We analyzed postmortem tissue sections of hippocampus from AD cases and middle frontal gyrus from non-AD cases with mainly 4R tau isoforms (progressive supranuclear palsy, PSP; corticobasal degeneration, CBD; aging related tau astrogliopathy, ARTAG) or 3R tau (Pick's disease, PiD).

View Article and Find Full Text PDF

Background: [18F]MK-6240 was developed for PET imaging of AD tau pathology, but the exact molecular signature of specific binding remains unclear. This study quantified levels of four phospho-tau forms and total tau in postmortem brain tissues from [18F]MK-6240 imaged cases to investigate associations with antemortem [18F]MK-6240 PET.

Methods: This study included four participants from the Wisconsin ADRC or WRAP with antemortem [18F]MK-6240 and [11C]PiB PET imaging and postmortem brain tissue obtained on average 32-months after imaging (Table 1).

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are bioactive phospholipids that act as mitogens in various cancers. Both LPA and S1P activate G-protein coupled receptors (GPCRs). We examined the role of CCN1/CYR61, an inducible matricellular protein, in LPA-induced signal transduction in PC-3 human prostate cancer cells.

View Article and Find Full Text PDF

Introduction: Tau aggregation into paired helical filaments and neurofibrillary tangles is characteristic of Alzheimer's disease (AD) and related disorders. However, biochemical assays for the quantification of soluble, earlier-stage tau aggregates are lacking. We describe an immunoassay that is selective for tau oligomers and related soluble aggregates over monomers.

View Article and Find Full Text PDF

Linear regression is one of the most used statistical techniques in neuroscience, including the study of the neuropathology of Alzheimer's disease (AD) dementia. However, the practical utility of this approach is often limited because dependent variables are often highly skewed and fail to meet the assumption of normality. Applying linear regression analyses to highly skewed datasets can generate imprecise results, which lead to erroneous estimates derived from statistical models.

View Article and Find Full Text PDF

Background: Altered glutamatergic neurotransmission may contribute to impaired default mode network (DMN) function in Alzheimer's disease (AD). Among the DMN hub regions, frontal cortex (FC) was suggested to undergo a glutamatergic plasticity response in prodromal AD, while the status of glutamatergic synapses in the precuneus (PreC) during clinical-neuropathological AD progression is not known.

Objective: To quantify vesicular glutamate transporter VGluT1- and VGluT2-containing synaptic terminals in PreC and FC across clinical stages of AD.

View Article and Find Full Text PDF

Background: [F]flutemetamol is a PET radioligand used to image brain amyloid, but its detection of myocardial amyloid is not well-characterized. This histological study characterized binding of fluorescently labeled flutemetamol (cyano-flutemetamol) to amyloid deposits in myocardium.

Methods: Myocardial tissue was obtained post-mortem from 29 subjects with cardiac amyloidosis including transthyretin wild-type (ATTRwt), hereditary/variant transthyretin (ATTRv) and immunoglobulin light-chain (AL) types, and from 10 cardiac amyloid-free controls.

View Article and Find Full Text PDF

Background: Altered cerebrovascular function and accumulation of amyloid-β (Aβ) after traumatic brain injury (TBI) can contribute to chronic neuropathology and increase the risk for Alzheimer's disease (AD). TBI due to a blast-induced shock wave (bTBI) adversely affects the neurovascular unit (NVU) during the acute period after injury. However, the chronic effects of bTBI and Aβ on cellular components of the NVU and capillary network are not well understood.

View Article and Find Full Text PDF

Individuals with familial Alzheimer's disease due to PSEN1 mutations develop high cortical fibrillar amyloid-β load but often have lower cortical 11C-Pittsburgh compound B (PiB) retention than Individuals with sporadic Alzheimer's disease. We hypothesized this is influenced by limited interactions of Pittsburgh compound B with cotton wool plaques, an amyloid-β plaque type common in familial Alzheimer's disease but rare in sporadic Alzheimer's disease. Histological sections of frontal and temporal cortex, caudate nucleus and cerebellum were obtained from 14 cases with sporadic Alzheimer's disease, 12 cases with familial Alzheimer's disease due to PSEN1 mutations, two relatives of a PSEN1 mutation carrier but without genotype information and three non-Alzheimer's disease cases.

View Article and Find Full Text PDF

Individuals with Down syndrome (DS) have a genetic predisposition for amyloid-β (Aβ) overproduction and earlier onset of Aβ deposits compared to patients with sporadic late-onset Alzheimer's disease (AD). Positron emission tomography (PET) with Pittsburgh Compound-B (PiB) detects fibrillar Aβ pathology in living people with DS and AD, but its relationship with heterogeneous Aβ forms aggregated within amyloid deposits is not well understood. We performed quantitative H-PiB binding assays and enzyme-linked immunosorbent assays of fibrillar (insoluble) unmodified Aβ40 and Aβ42 forms and -terminus truncated and pyroglutamate-modified AβNpE3-40 and AβNpE3-42 forms in postmortem frontal cortex and precuneus samples from 18 DS cases aged 43-63 years and 17 late-onset AD cases aged 62-99 years.

View Article and Find Full Text PDF

Alzheimer's disease is a progressive neurodegenerative disease characterized neuropathologically by presence of extracellular amyloid plaques composed of fibrillar amyloid beta (Aβ) peptides and intracellular neurofibrillary tangles. Post-mortem and studies implicate HSV-1 infection in the brain as a precipitating factor in disease/pathology initiation. HSV-1 infection of two-dimensional (2D) neuronal cultures causes intracellular accumulation of Aβ42 peptide, but these 2D models do not recapitulate the three-dimensional (3D) architecture of brain tissue.

View Article and Find Full Text PDF

Specificity and sensitivity of positron emission tomography (PET) radiopharmaceuticals targeting fibrillar amyloid-β (Aβ) deposits is high for detection of neuritic Aβ plaques, a mature form of Aβ deposits which often have dense Aβ core (i.e., cored plaques).

View Article and Find Full Text PDF

Introduction: Positron emission tomography (PET) using radiolabeled amyloid-binding compounds has advanced the field of Alzheimer's disease (AD) by enabling detection and longitudinal tracking of fibrillar amyloid-β (Aβ) deposits in living people. However, this technique cannot distinguish between Aβ deposits in brain parenchyma (amyloid plaques) from those in blood vessels (cerebral amyloid angiopathy, CAA). Development of a PET radioligand capable of selectively detecting CAA would help clarify its contribution to global brain amyloidosis and clinical symptoms in AD and would help to characterize side-effects of anti-Aβ immunotherapies in AD patients, such as CAA.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) is a complex and dynamic physiological interface between brain parenchyma and cerebral vasculature. It is composed of closely interacting cells and signaling molecules that regulate movement of solutes, ions, nutrients, macromolecules, and immune cells into the brain and removal of products of normal and abnormal brain cell metabolism. Dysfunction of multiple components of the BBB occurs in aging, inflammatory diseases, traumatic brain injury (TBI, severe or mild repetitive), and in chronic degenerative dementing disorders for which aging, inflammation, and TBI are considered risk factors.

View Article and Find Full Text PDF

Down syndrome (DS) results in an overproduction of amyloid-β (Aβ) peptide associated with early onset of Alzheimer's disease (AD). DS cases have Aβ deposits detectable histologically as young as 12-30 years of age, primarily in the form of diffuse plaques, the type of early amyloid pathology also seen at pre-clinical (i.e.

View Article and Find Full Text PDF

Purpose: Traumatic brain injury (TBI) is a risk factor for developing chronic neurodegenerative conditions including Alzheimer's disease (AD). The purpose of this study was to examine chronic effects of blast TBI on retinal ganglion cells (RGC), optic nerve, and brain amyloid load in a mouse model of AD amyloidosis.

Methods: Transgenic (TG) double-mutant APPswePSENd19e (APP/PS1) mice and nontransgenic (Non-TG) littermates were exposed to a single blast TBI (20 psi) at age 2 to 3 months.

View Article and Find Full Text PDF

Background: Altered glutamatergic neurotransmission after traumatic brain injury (TBI) contributes to excitotoxic cell damage and death. Prevention or suppression of such changes is a desirable goal for treatment of TBI. Memantine (3,5-dimethyl-1-adamantanamine), an uncompetitive NMDA receptor antagonist with voltage-dependent open channel blocking kinetics, was reported to be neuroprotective in preclinical models of excitotoxicity, brain ischemia, and in TBI when administered prophylactically, immediately, or within minutes after injury.

View Article and Find Full Text PDF

Herpes simplex virus 1 (HSV-1) establishes latency in both peripheral nerve ganglia and the central nervous system (CNS). The outcomes of acute and latent infections in these different anatomic sites appear to be distinct. It is becoming clear that many of the existing culture models using animal primary neurons to investigate HSV-1 infection of the CNS are limited and not ideal, and most do not recapitulate features of CNS neurons.

View Article and Find Full Text PDF

Although, by age 40, individuals with Down syndrome (DS) develop amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles (NFTs) linked to cognitive impairment in Alzheimer's disease (AD), not all people with DS develop dementia. Whether Aβ plaques and NFTs are associated with individuals with DS with (DSD +) and without dementia (DSD -) is under-investigated. Here, we applied quantitative immunocytochemistry and fluorescent procedures to characterize NFT pathology using antibodies specific for tau phosphorylation (pS422, AT8), truncation (TauC3, MN423), and conformational (Alz50, MC1) epitopes, as well as Aβ and its precursor protein (APP) to frontal cortex (FC) and striatal tissue from DSD + to DSD - cases.

View Article and Find Full Text PDF

The positron emission tomography (PET) radiotracer Pittsburgh Compound B ([C-11]PiB) demonstrates a high affinity for fibrillary amyloid-beta (Aβ) aggregates. However, [C-11]PiB's in vivo sensitivity and specificity is an ongoing area of investigation in correlation studies with postmortem measures of Aβ pathology. One potential confound in PET-to-postmortem correlation studies is the limited spatial resolution of PET and resulting partial volume effects (PVEs).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a risk factor for development of chronic neurodegenerative disorders later in life. This review summarizes the current knowledge and concepts regarding the connection between long-term consequences of TBI and aging-associated neurodegenerative disorders including Alzheimer's disease (AD), chronic traumatic encephalopathy (CTE), and Parkinsonism, with implications for novel therapy targets. Several aggregation-prone proteins such as the amyloid-beta (Aβ) peptides, tau proteins, and α-synuclein protein are involved in secondary pathogenic cascades initiated by a TBI and are also major building blocks of the hallmark pathological lesions in chronic human neurodegenerative diseases with dementia.

View Article and Find Full Text PDF