Publications by authors named "Abraham Ulman"

Short biologic half-lives limit the therapeutic utility of many small molecules. One approach to extending the half-life of pharmacologically active small molecules is conjugation to less degradable nanoparticles; here we report the synthesis and activity of six targeted polymeric (PEG-b-PLA) nanoparticles for use as adenosine receptor agonists. Using click chemistry, PLA-b-PEG400-N and PLA-b-PEG2000 block copolymers were bound to adenosine at the 3',4'-OH, 5'-OH, and 6-NH positions with an acetylene group.

View Article and Find Full Text PDF

Background: The interest in introducing ecologically-clean, and efficient enzymes into modern industry has been growing steadily. However, difficulties associated with controlling their orientation, and maintaining their selectivity and reactivity is still a significant obstacle. We have developed precise immobilization of biomolecules, while retaining their native functionality, and report a new, fast, easy, and reliable procedure of protein immobilization, with the use of Adenylate kinase as a model system.

View Article and Find Full Text PDF

We deposit phospholipid monolayers on highly doped p-GaAs electrodes that are precoated with methyl-mercaptobiphenyl monolayers and operate such a biofunctional electrolyte-insulator-semiconductor (EIS) setup as an analogue of a metal-oxide-semiconductor setup. Electrochemical impedance spectra measured over a wide frequency range demonstrate that the presence of a lipid monolayer remarkably slows down the diffusion of ions so that the membrane-functionalized GaAs can be subjected to electrochemical investigations for more than 3 days with no sign of degradation. The biofunctional EIS setup enables us to translate changes in the surface charge density Q and bias potentials Ubias into the change in the interface capacitance Cp.

View Article and Find Full Text PDF

Nanopatterned polymer brushes with sub-50-nm resolution were prepared by a combination of electron-beam chemical lithography (EBCL) of self-assembled monolayers (SAMs) and surface-initiated photopolymerization (SIPP). As a further development of our previous work, selective EBCL was performed with a highly focused electron beam and not via a mask, to region-selectively convert a SAM of 4'-nitro-1,1'-biphenyl-4-thiol to defined areas of crosslinked 4'-amino-1,1'-biphenyl-4-thiol. These "written" structures were then used to prepare surface-bonded, asymmetric, azo initiator sites of 4'-azomethylmalonodinitrile-1,1'-biphenyl-4-thiol.

View Article and Find Full Text PDF

Nanoscale engineering is one of the most dynamically growing areas at the interface between electronics, physics, biology, and medicine. As there are no safety regulations yet, concerns about future health problems are rising. We investigated the effects of citrate/gold nanoparticles at different concentrations and exposure times on human dermal fibroblasts.

View Article and Find Full Text PDF

The molecular-scale structure and phase behavior of single-component Langmuir films of 4'-methyl-4-mercaptobiphenyl (MMB) and 4'-perfluoromethyl-4-mercaptobiphenyl (FMMB) on mercury were studied using surface tensiometry, grazing incidence X-ray diffraction, and X-ray reflectivity. At low coverages, a condensed but in-plane disordered single layer of surface-parallel molecules is found for both compounds. At high coverages, both compounds exhibit in-plane-ordered phases of standing-up molecules.

View Article and Find Full Text PDF

We have successfully controlled the size of magnetic nanoparticles by adjusting the surfactant/solvent ratio. Gamma-Fe(2)O(3) nanoparticles of 5.6 and 12.

View Article and Find Full Text PDF

A fast combinatorial approach to access information about the immobilization behavior and kinetics of enzymes on a variation of surfaces is presented. As a test system, Candida Antarctica Lipase B was immobilized on a self-assembled monolayer bearing a gradient of surface energy. The respective immobilization behavior was monitored by Fourier transform infrared micro-spectroscopy.

View Article and Find Full Text PDF

Core(Cr)/shell(gamma-Fe(2)O(3)) nanoparticles were synthesized by mixing Fe(CO)(5) and Cr(CO)(6) in the 9:1 ratio. These particles exhibit narrow size distribution with 13.5 nm as mean diameter and uniform spherical shape.

View Article and Find Full Text PDF

Extended, relaxed, condensed, and interacting forms of the polysaccharide hyaluronan have been observed by atomic force microscopy (AFM). The types of images obtained depend on the properties of the surfaces used. We have investigated several different surface conditions for HA imaging, including unmodified mica, mica chemically modified with two different kinds of amino-terminated silanes (3-aminopropyltriethoxysilane and N-trimethoxysilylpropyl-N,N,N-trimethylammonium chloride), and highly oriented pyrolytic graphite.

View Article and Find Full Text PDF

We present the first study of mixed alkanethiolate SAMs on ultrasmooth gold surfaces. By eliminating surface roughness, it became possible, for the first time, to investigate wetting properties as a function of surface chemical composition. In three different surface compositions, it was found that contact-angle hysteresis apparently vanished.

View Article and Find Full Text PDF

Adsorption of water on self-assembled monolayers (SAMs) of 4-(4-mercaptophenyl)pyridine on gold at low temperatures under ultrahigh vacuum conditions is studied by synchrotron radiation X-ray photoelectron and absorption spectroscopy. Water adsorption induces a strong modification of the chemical state of the pyridine N atoms at the SAM/ice interface, indicative for strong H bonding and partial proton transfer between water molecules and pyridine moieties. Additionally, the initial molecular orientation within the SAM is changed upon formation of an adsorbed water multilayer.

View Article and Find Full Text PDF

Intravenous iron therapy is used to treat anemia associated with chronic kidney disease. The chemical structures of parenteral iron agents have not been characterized in detail, and correlations between structure, efficiency of iron delivery, and toxicity via catalysis of oxygen-derived free radical creation remain to be established. In this study, two formulations of parenteral iron have been characterized by absorption spectroscopy, X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), atomic force microscopy (AFM), and elemental analysis.

View Article and Find Full Text PDF

Here we report on a mixed oxide system, gamma-Fe2O3 nanoparticles doped with Mn(III), where the transition from the cubic to the more stable hexagonal alpha-Fe2O3 structure is suppressed. When amorphous Fe2O3 is heated at 300 degrees C for 3 h, ferrimagnetic gamma-Fe2O3 is observed as the sole product. On the other hand, when the temperature is raised to 500 degrees C, one observes only antiferromagnetic alpha-Fe2O3 as the product.

View Article and Find Full Text PDF

The presence of a water layer on the surface of muscovite mica under ambient conditions is well established. The water molecules are well ordered and seem to be oriented, leading to an icelike monolayer (probably ferroelectric) in epitaxial relation with the mica surface. We have imaged and characterized the height and contact angle of ordered water layer(s) formed by wetting and de-wetting processes on mica surfaces at different states of hydration by tapping mode atomic force microscopy.

View Article and Find Full Text PDF

We present a new route for the preparation of gamma-alumina and YAG nanoparticles. Metal salts of ethylhexanoic acids provide good solubility in hydrocarbon solvents and allow efficient ultrasonication. The sonication product is an alumioxane gel, which can reversibly collapse and reform, depending on the solvent used.

View Article and Find Full Text PDF