Publications by authors named "Abraham Samuel Finny"

Bioremediation is experiencing a paradigm shift by integrating three-dimensional (3D) bioprinting. This transformative approach augments the precision and versatility of engineering with the functional capabilities of material science to create environmental restoration strategies. This comprehensive review elucidates the foundational principles of 3D bioprinting technology for bioremediation, its current applications in bioremediation, and the prospective avenues for future research and technological evolution, emphasizing the intersection of additive manufacturing, functionalized biosystems, and environmental remediation; this review delineates how 3D bioprinting can tailor bioremediation apparatus to maximize pollutant degradation and removal.

View Article and Find Full Text PDF

Nanomaterials obtained from sustainable and natural sources have seen tremendous growth in recent times due to increasing interest in utilizing readily and widely available resources. Nanocellulose materials extracted from renewable biomasses hold great promise for increasing the sustainability of conventional materials in various applications owing to their biocompatibility, mechanical properties, ease of functionalization, and high abundance. Nanocellulose can be used to reinforce mechanical strength, impart antimicrobial activity, provide lighter, biodegradable, and more robust materials for packaging, and produce photochromic and electrochromic devices.

View Article and Find Full Text PDF

Exposure to excessive ultraviolet (UV) radiation can have detrimental effects on human health. Inexpensive easy-to-use sensors for monitoring UV radiation can allow broad-scale assessment of UV exposure, but their implementation requires technology that enables rapid and affordable manufacturing of these sensors on a large scale. Herein, we report a novel three-dimensional (3D) printing procedure and printable ink composition that produce robust, flexible, and wearable UV sensors.

View Article and Find Full Text PDF

We describe an easy-to-use sensor as a tool to quantify and authenticate antioxidant active ingredients in cosmetic products. The sensing platform comprises a responsive nanoengineered surface that reacts specifically and generates distinct optically detectable signals that are representative of the chemical composition and concentration of active ingredients. The platform can be inexpensively produced in large quantities and a procedure to manufacture the sensors by 3D printing is described.

View Article and Find Full Text PDF