Publications by authors named "Abraham R Liboff"

The Warburg observation concerning ATP generation in cancer cells is analyzed with regard to the likely involvement of H+ resonance effects on the angular velocity of the ATP synthase rotor. It is reasonable to expect that the variety of diseases associated with mitochondrial dysfunction may in part be related to the ATP synthase rate of rotation. Experimental measurements of ATP synthase rotational rates, as found in the literature, are consistent with what might be expected from the ion cyclotron resonance (ICR) frequencies of protons moving under a Lorentz force determined by the approximate surface intensity of the geomagnetic field (~26-65 ?T).

View Article and Find Full Text PDF

There is evidence for robust interactions of weak ELF magnetic fields with biological systems. Quite apart from the difficulties attending a proper physical basis for such interactions, an equally daunting question asks why these should even occur, given the apparent lack of comparable signals in the long-term electromagnetic environment. We suggest that the biological basis is likely to be found in the weak (∼50 nT) daily swing in the geomagnetic field that results from the solar tidal force on free electrons in the upper atmosphere, a remarkably constant effect exactly in phase with the solar diurnal change.

View Article and Find Full Text PDF

Only recently has the critical importance of electromagnetic (EM) field interactions in biology and medicine been recognized. We review the phenomenon of resonance signaling, discussing how specific frequencies modulate cellular function to restore or maintain health. The application of EM-tuned signals represents more than merely a new tool in information medicine.

View Article and Find Full Text PDF

Contrary to the belief that paleomagnetic reversals are not biologically significant, we find good reason to think otherwise. Attention is drawn to polarity transitions, time intervals a few thousand years long that follow the collapse of the existing geomagnetic dipole moment and precede the establishment of the new, oppositely directed moment. The geomagnetic field during transitions is reduced to a maximal mean intensity about 10% of the stable field and can exhibit low-frequency perturbations comparable to numerous laboratory-based extremely low frequency (ELF) studies reporting biological interactions, making it very likely that similar interactions must occur over the course of a polarity transition.

View Article and Find Full Text PDF
Electromagnetic vaccination.

Med Hypotheses

September 2012

Numerous reports indicate robust mitogenic responses in human lymphocytes to low-frequency electromagnetic fields. We hypothesize that these observations reflect a wider platform for immune capability than presently recognized, whereby weak electromagnetic signals play the role of antigens. This notion hinges on whether pathogenic bacteria can emit correspondingly detectable electromagnetic signals.

View Article and Find Full Text PDF

Work by Lund, Burr, Becker, and others leads to the inescapable conclusion that organisms tend to express quasisystemic electric changes when perturbed, and, conversely, will tend toward wellness either through endogenous repair currents or the application of equivalent external currents. We show that an all-inclusive electromagnetic field representation for living systems is fully consistent with this extensive body of work. This electrogenomic field may provide the basis for a new paradigm in biology and medicine that is radically different from the present emphasis on molecular biology and biochemistry.

View Article and Find Full Text PDF