Understanding hydrogeochemical heterogeneity, associated with natural nitrate attenuation, is an integral part of implementing integrated land and water management on a regional or national scale. Redox conditions are a key indicator of naturally occurring denitrification in the groundwater environment, and often used to inform spatial planning and targeted regulation. This work describes the development of a statistical redox condition model for the groundwater environment at a national scale, using spatially variable physiochemical descriptors as predictors.
View Article and Find Full Text PDFSand filtration is a cost-effective means of reducing microbial pathogens in drinking-water treatment. Our understanding of pathogen removal by sand filtration relies largely on studies of process microbial indicators, and comparative data from pathogens are sparse. In this study, we examined the reductions of norovirus, echovirus, adenovirus, bacteriophage MS2 and PRD1, Campylobacter jejuni, and Escherichia coli during water filtration through alluvial sand.
View Article and Find Full Text PDFSynthetic DNA tracers are gaining interest as tools for tracking contamination pathways and hydraulic connections in surface water and groundwater systems. However, few quantitative data exist that describe DNA tracer degradation and adsorption in environmental matrices. We undertook laboratory experiments to quantify the degradation of multiple double-stranded DNA tracers in stream water, groundwater, and domestic and dairy-shed effluent, and adsorption to stream sediments, soils, coastal sand aquifer media and alluvial sandy gravel aquifer media.
View Article and Find Full Text PDFInvestigating contamination pathways and hydraulic connections in complex hydrological systems will benefit greatly from multi-tracer approaches. The use of non-toxic synthetic DNA tracers is promising, because unlimited numbers of tracers, each with a unique DNA identifier, could be used concurrently and detected at extremely low concentrations. This study aimed to develop multiple synthetic DNA tracers as free molecules and encapsulated within microparticles of biocompatible and biodegradable alginate and chitosan, and to validate their field utility in different systems.
View Article and Find Full Text PDFAn important policy consideration for integrated land and water management is to understand the spatial distribution of nitrate attenuation in the groundwater system, for which redox condition is the key indicator. This paper proposes a methodology to accommodate the computational demands of large datasets, and presents national-scale predictions of groundwater redox class for New Zealand. Our approach applies statistical learning methods to relate the redox class determined on groundwater samples to spatially varying attributes.
View Article and Find Full Text PDFWith the intensification of human activities, fresh water resources are increasingly being exposed to contamination from effluent disposal to land. Thus, there is a greater need to identify the sources and pathways of water contamination to enable the development of better mitigation strategies. To track discharges of domestic effluent into soil and groundwater, 10 synthetic double-stranded DNA (dsDNA) tracers were developed in this study.
View Article and Find Full Text PDFPhosphorous (P) leaching (e.g., from effluents, fertilizers) and transport in highly permeable subsurface media can be an important pathway that contributes to eutrophication of receiving surface waters as groundwater recharges the base-flow of surface waters.
View Article and Find Full Text PDFJ Pharm Bioallied Sci
August 2015
Introduction: Digital three-dimensional models are widely used for orthodontic diagnosis. The purpose of this study was to appraise the accuracy of digital models obtained from computer-aided design/computer-aided manufacturing (CAD/CAM) and cone-beam computed tomography (CBCT) for tooth-width measurements and the Bolton analysis.
Materials And Methods: Digital models (CAD/CAM, CBCT) and plaster model were made for each of 50 subjects.
The laboratory implementation of a fault detection and localization method based on inversion of dynamic surface displacements measured by a scanned laser Doppler vibrometer (SLDV) was investigated. The technique uses flexural wave and generalized force inversion algorithms which have previously been demonstrated using simulated noise-free vibration data generated for thick plates with a finite element model. Here these inversion algorithms to SLDV measurements made in the laboratory on a thin nickel plate and a thin carbon fiber composite plate, both having attached reinforcing ribs with intentional de-bonding of the rib/plate interface at a specific location on each structure are applied.
View Article and Find Full Text PDF