Computation (Basel)
February 2023
Over the course of the COVID-19 pandemic millions of deaths and hospitalizations have been reported. Different SARS-CoV-2 variants of concern have been recognized during this pandemic and some of these variants of concern have caused uncertainty and changes in the dynamics. The Omicron variant has caused a large amount of infected cases in the US and worldwide.
View Article and Find Full Text PDFWe propose a new mathematical model to investigate the effect of the introduction of an exposed stage for the cats who become infected with the T. gondii parasite, but that are not still able to produce oocysts in the environment. The model considers a time delay in order to represent the duration of the exposed stage.
View Article and Find Full Text PDFWe propose two different mathematical models to study the effect of immigration on the COVID-19 pandemic. The first model does not consider immigration, whereas the second one does. Both mathematical models consider five different subpopulations: susceptible, exposed, infected, asymptomatic carriers, and recovered.
View Article and Find Full Text PDFSeveral variants of the SARS-CoV-2 virus have been detected during the COVID-19 pandemic. Some of these new variants have been of health public concern due to their higher infectiousness. We propose a theoretical mathematical model based on differential equations to study the effect of introducing a new, more transmissible SARS-CoV-2 variant in a population.
View Article and Find Full Text PDFSpat Spatiotemporal Epidemiol
December 2011
The 2009 swine flu pandemic was a global outbreak of a new strain of H1N1 influenza virus and there are more than 14,000 confirmed deaths worldwide. The aim of this paper is to propose new mathematical models to study different dynamics of H1N1 influenza virus spread in selected regions around the world. Spatial and temporal elements are included in these models to reproduce the dynamics of AH1N1/09 virus.
View Article and Find Full Text PDFIn this paper we present an epidemiological model to study the transmission dynamics of toxoplasmosis in a cat population under a continuous vaccination schedule. We explore the dynamics of toxoplasmosis at the population level using a mathematical model that includes the effect of oocyst, since the probability of acquisition of Toxoplasma Gondii infection depends on the environmental load of the parasite. This model considers indirectly the infection of prey through the oocyst shedding by cats.
View Article and Find Full Text PDFIn this paper, we study the dynamics of the transmission of respiratory syncytial virus (RSV) in the population using stochastic models. The stochastic models are developed introducing stochastic perturbations on the demographic parameter as well as on the transmission rate of the RSV. Numerical simulations of the deterministic and stochastic models are performed in order to understand the effect of fluctuating birth rate and transmission rate of the RSV on the population dynamics.
View Article and Find Full Text PDF