Publications by authors named "Abraham Albert Bonela"

Background: Music is an integral part of our lives and is often played in public places like restaurants. People exposed to music that contained alcohol-related lyrics in a bar scenario consumed significantly more alcohol than those exposed to music with less alcohol-related lyrics. Existing methods to quantify alcohol exposure in song lyrics have used manual annotation that is burdensome and time intensive.

View Article and Find Full Text PDF

A vast amount of media-related text data is generated daily in the form of social media posts, news stories or academic articles. These text data provide opportunities for researchers to analyse and understand how substance-related issues are being discussed. The main methods to analyse large text data (content analyses or specifically trained deep-learning models) require substantial manual annotation and resources.

View Article and Find Full Text PDF

Exposure to alcohol content in media increases alcohol consumption and related harm. With exponential growth of media content, it is important to use algorithms to automatically detect and quantify alcohol exposure. Foundation models such as Contrastive Language-Image Pretraining (CLIP) can detect alcohol exposure through Zero-Shot Learning (ZSL) without any additional training.

View Article and Find Full Text PDF

Background: Acute alcohol intoxication impairs cognitive and psychomotor abilities leading to various public health hazards such as road traffic accidents and alcohol-related violence. Intoxicated individuals are usually identified by measuring their blood alcohol concentration (BAC) using breathalyzers that are expensive and labor intensive. In this paper, we developed the Audio-based Deep Learning Algorithm to Identify Alcohol Inebriation (ADLAIA) that can instantly predict an individual's intoxication status based on a 12-s recording of their speech.

View Article and Find Full Text PDF

Background: Seeing alcohol in media has been demonstrated to increase alcohol craving, impulsive decision-making, and hazardous drinking. Due to the exponential growth of (social) media use it is important to develop algorithms to quantify alcohol exposure efficiently in electronic images. In this article, we describe the development of an improved version of the Alcoholic Beverage Identification Deep Learning Algorithm (ABIDLA), called ABIDLA2.

View Article and Find Full Text PDF

Background: Evidence demonstrates that seeing alcoholic beverages in electronic media increases alcohol initiation and frequent and excessive drinking, particularly among young people. To efficiently assess this exposure, the aim was to develop the Alcoholic Beverage Identification Deep Learning Algorithm (ABIDLA) to automatically identify beer, wine and champagne/sparkling wine from images.

Methods: Using a specifically developed software, three coders annotated 57,186 images downloaded from Google.

View Article and Find Full Text PDF