Publications by authors named "Abraham A Abe"

In recent times, circular economy initiatives in addition to the need for sustainable biomaterials have brought about several attempts at the eco-friendly, eco-sustainable and cost-effective production of asphalt pavements. It is an increasingly common practice in the asphalt industry to improve road pavement performance using additives to enhance the physico-chemical properties of bitumen, which performs the role of the binder in the asphalt mix. This paper evaluated the potential of a bio-based additive derived from olive leaf residue as a modifier and antioxidant agent for bitumen.

View Article and Find Full Text PDF

Enhanced oil recovery (EOR) processes are technologies used in the oil and gas industry to maximize the extraction of residual oil from reservoirs after primary and secondary recovery methods have been carried out. The injection into the reservoir of surface-active substances capable of reducing the surface tension between oil and the rock surface should favor its extraction with significant economic repercussions. However, the most commonly used surfactants in EOR are derived from petroleum, and their use can have negative environmental impacts, such as toxicity and persistence in the environment.

View Article and Find Full Text PDF

In this investigation the dynamics of two types of bitumens with different penetration grade were tested by using dynamic shear rheometry (DSR) and Nuclear Magnetic Resonance (NMR) at unaged conditions, and upon both short- and long-term artificial aging. The gel-sol transition temperature was found to increase with increasing the time of aging treatment. Arrhenius parameters of the viscosity were found, unexpectedly, to be correlated with those of simple liquids, suggesting that the two kinds of systems, although chemically and physically quite different, share the same basic process at the molecular level.

View Article and Find Full Text PDF

The carbon footprint reduction mandate and other eco-friendly policies currently in place are constantly driving the trend of the synthesis and application of sustainable functional materials. The bitumen industry is not an exception to this trend and, every day, new technologies that facilitate safer, cost effective and more sustainable industrial processes and road paving operations are being researched and brought to light. A lot of research is currently ongoing to improve bitumen's properties due to its use as a binder in road paving processes.

View Article and Find Full Text PDF

Refuse-Derived Fuels (RDFs) are segregated forms of wastes obtained by a combined mechanical-biological processing of municipal solid wastes (MSWs). The narrower characteristics, e.g.

View Article and Find Full Text PDF

Bitumen, one of the by-products of petroleum industry processes, is the most common binder used in road pavements and in the construction industry in general. It is a complex organic mixture of a broad range of hydrocarbons classified into four chemical families, collectively known with the acronym SARA fractions, which include saturates, aromatics, resins and asphaltenes. Since the 1940s, researchers working on bitumen and the science behind its existence, nature and application have investigated the spatial organization and arrangement of several molecular species present in the binder.

View Article and Find Full Text PDF

Recent studies have worked towards addressing environmental issues such as global warming and greenhouse gas emissions due to the increasing awareness of the depletion of natural resources. The asphalt industry is seeking to implement measures to reduce its carbon footprint and to promote sustainable operations. The reuse of several wastes and by-products is an example of a more eco-friendly activity that fulfils the circular economy principle.

View Article and Find Full Text PDF

Over the years, the need for the synthesis of biodegradable materials has facilitated the drift of the asphalt industry towards eco-sustainable and cost-effective production of road pavements. The principal additives in the asphalt industry to improve the performance of road pavements and increase its lifespan are majorly rheological modifiers, adhesion promoters and anti-oxidant agents. Rheological modifiers increase physico-chemical properties such as transition temperature of asphalt binder (bitumen), adhesion promoters increase the affinity between binder and stone aggregates while anti-oxidant agents reduce the effects of oxidation caused by exposure to air, water and other natural elements during the production of asphalt pavements.

View Article and Find Full Text PDF

The asphalt industry's incentive to reduce greenhouse gas emissions has increased since the 1990s due to growing concerns on environmental issues such as global warming and carbon footprint. This has stimulated the introduction of Warm Mix Asphalt (WMA) and its technologies which serve the purpose of reducing greenhouse gas emissions by reducing the mixing and compaction temperatures of asphalt mix. WMA gained popularity due to the environmental benefit it offers without compromising the properties, performance and quality of the asphalt mix.

View Article and Find Full Text PDF