The present work analyzed the microstructure, mechanical, and corrosion properties of a dissimilar activated tungsten inert gas (ATIG) welded 2205 duplex stainless-steel (2205 DSS) plate and AISI 316L austenitic stainless steel (316L ASS) and compared them to conventional dissimilar welded tungsten inert gas (TIG). The mixing design method is a tool used to establish the optimal combined flux to achieve a full-penetrated weld bead in one single pass. A microstructure study was carried out by scanning electron microscopy (SEM).
View Article and Find Full Text PDFIn this study, the effects of pseudo-ternary oxides on mechanical properties and microstructure of 316L stainless steel tungsten inert gas (TIG) and activating tungsten inert gas (ATIG) welded joints were investigated. The novelty in this work is introducing a metaheuristic technique called the particle swarm optimization (PSO) method to develop a mathematical model of the ultimate tensile strength (UTS) in terms of proportions of oxides flux. A constrained optimization algorithm available in Matlab 2020 optimization toolbox is used to find the optimal percentages of the selected powders that provide the maximum UTS.
View Article and Find Full Text PDF