Publications by authors named "Abou-Bakr M Youssef"

The rapid advancement of diagnostic and therapeutic optical techniques for oncology demands a good understanding of the optical properties of biological tissues. This study explores the capabilities of hyperspectral (HS) cameras as a non-invasive and non-contact optical imaging system to distinguish and highlight spectral differences inbiological soft tissuesof three structures (kidney, heart, and liver) for use inendoscopic interventionoropen surgery. The study presents an optical system consisting of two individual setups, the transmission setup, and the reflection setup, both incorporating anHS camerawith apolychromatic light sourcewithin the range of 380 to 1050 nm to measure tissue's light transmission (T) and diffuse light reflectance (R), respectively.

View Article and Find Full Text PDF

Background & Objective: Thermal ablation is the predominant methodology to treat liver tumors for segregating patients who are not permitted to have surgical intervention. However, noticing or predicting the size of the thermal strategies is a challenging endeavor. We aim to analyze the effects of ablation district volume following radiofrequency ablation (RFA) of ex-vivo liver exploiting a custom Hyperspectral Imaging (HSI) system.

View Article and Find Full Text PDF

The model-based approach for detecting the fMRI activations involves assumptions about the hemodynamic response function. If such assumptions are incorrect or incomplete, this may result in biased estimates of the true response, posing a significant obstacle to the practicality of the technique. In this work, a simple yet robust model-free technique is proposed for detecting the fMRI activations.

View Article and Find Full Text PDF

A simple iterative algorithm, termed deconvolution-interpolation gridding (DING), is presented to address the problem of reconstructing images from arbitrarily-sampled k-space. The new algorithm solves a sparse system of linear equations that is equivalent to a deconvolution of the k-space with a small window. The deconvolution operation results in increased reconstruction accuracy without grid subsampling, at some cost to computational load.

View Article and Find Full Text PDF

We develop a simple yet effective technique for motion artifact suppression in ultrasound images reconstructed from multiple acquisitions. Assuming a rigid-body motion model, a navigator echo is computed for each acquisition and then registered to estimate the motion in between acquisitions. By detecting this motion, it is possible to compensate for it in the reconstruction step to obtain images that are free of lateral motion artifacts.

View Article and Find Full Text PDF

A modification of the classical navigator echo (NAV) technique is presented whereby both 2D translational motion components are computed from a single navigator line. Instead of acquiring the NAV at the center of the k-space, a kx line is acquired off-center in the phase-encoding (ky) direction as a floating NAV (FNAV). It is shown that the translational motion in both the readout and phase-encoding directions can be computed from this line.

View Article and Find Full Text PDF

This paper presents a novel approach for speckle reduction and coherence enhancement of ultrasound images based on nonlinear coherent diffusion (NCD) model. The proposed NCD model combines three different models. According to speckle extent and image anisotropy, the NCD model changes progressively from isotropic diffusion through anisotropic coherent diffusion to, finally, mean curvature motion.

View Article and Find Full Text PDF

A new system is proposed for tracking sensitive areas in the retina for computer-assisted laser treatment of choroidal neovascularization (CNV). The system consists of a fundus camera using red-free illumination mode interfaced to a computer that allows real-time capturing of video input. The first image acquired is used as the reference image and utilized by the treatment physician for treatment planning.

View Article and Find Full Text PDF

We present a study of the nonlinear dynamics of electrocardiogram (ECG) signals for arrhythmia characterization. The correlation dimension and largest Lyapunov exponent are used to model the chaotic nature of five different classes of ECG signals. The model parameters are evaluated for a large number of real ECG signals within each class and the results are reported.

View Article and Find Full Text PDF