The quantum phase transitions of dipoles confined to the vertices of two-dimensional lattices of square and triangular geometry is studied using path integral ground state quantum Monte Carlo. We analyze the phase diagram as a function of the strength of both the dipolar interaction and a transverse electric field. The study reveals the existence of a class of orientational phases of quantum dipolar rotors whose properties are determined by the ratios between the strength of the anisotropic dipole-dipole interaction, the strength of the applied transverse field, and the rotational constant.
View Article and Find Full Text PDFThe design, synthesis, and characterization of an unsymmetrical diamidato-dithiol ligand (H(4) 1, where the hydrogen atoms represent deprotonatable amide and thiol protons) and its cobalt(III) complex, a synthetic analogue of the cobalt-containing nitrile hydratase enzyme family, are reported. The ligand was prepared in 24% yield from an overall eight-step synthetic pathway following a modified protocol established in our laboratory that includes two peptide couples using O-(1H-benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate as the coupling agent. The ligand and all precursors were characterized by NMR spectroscopy and elemental analysis.
View Article and Find Full Text PDF