We demonstrate that the power conversion efficiency (PCE), photocurrent, and fill factor (FF) of perovskite solar cells (PSC) can be significantly improved by the photoinduced self-gating in ionic liquids (ILs) via n-doping of the carbon nanotube (CNT) top electrode on the fullerene electron transport layer (ETL). CNTs, graphene, and other carbon electrodes have been proven to be stable electrodes for PSC, but efficiency was not high. We have previously shown that the performance of PSCs with CNT electrodes can be improved by IL gating with gate voltage () applied from an external power source.
View Article and Find Full Text PDFWe demonstrate an improvement in the performance of organic photovoltaic (OPV) systems based on small molecules by ionic gating via controlled reversible n-doping of multi-wall carbon nanotubes (MWCNTs) coated on fullerene electron transport layers (ETLs): C and C. Such electric double-layer charging (EDLC) doping, achieved by ionic liquid (IL) charging, allows tuning of the electronic concentration in MWCNTs and the fullerene planar acceptor layers, increasing it by orders of magnitude. This leads to the decrease of the series and increase of the shunt resistances of OPVs and allows use of thick (up to 200 nm) ETLs, increasing the durability of OPVs.
View Article and Find Full Text PDF