DMTMM-mediated amidation of sodium alginate is one of the methods used for the chemical modification of alginate with amines. However, there is a limited understanding of how the reaction conditions, particularly the pH value, influence the conjugation efficiency (CE) and the resulting degree of substitution (DS). In this study, we investigated the effect of the pH during the reaction, focusing on both neutral and weakly basic conditions, using water and buffer as solvents.
View Article and Find Full Text PDFThe application of smart pH-sensitive carriers has become an ideal choice for administering drugs with desired release profiles. Although pH-sensitive microbeads offer distinct benefits for delivering anticancer drugs orally, they encounter drawbacks, including low encapsulation efficiency, weak mechanical stability, biocompatibility concerns, and the risk of abrupt release. This study focuses on developing pH-sensitive coated composite microbeads for effective encapsulation and sustained release of 5-fluorouracil (5-FU).
View Article and Find Full Text PDFPostmodification of alginate-based microspheres with polyelectrolytes (PEs) is commonly used in the cell encapsulation field to control microsphere stability and permeability. However, little is known about how different applied PEs shape the microsphere morphology and properties, particularly . Here, we addressed this question using model multicomponent alginate-based microcapsules postmodified with PEs of different charge and structure.
View Article and Find Full Text PDFA novel bio-based catalyst was developed by in-situ forming Chromium(III) (Cr)-based metal-organic framework, MIL-101(Cr), in the presence of k-carrageenan (k-Car) and followed by a post-synthetic modification to introduce additional -SOH functional groups into the composite structure of k-Car/MIL-101(Cr). Different analyses were conducted to confirm the successful catalyst formation. The catalyst performance was evaluated in the solid acid catalyzed dehydration of fructose to 5-hydroxymethylfurfural.
View Article and Find Full Text PDFIn the pursuit of enhancing the catalytic potential of the Wells-Dawson (WD) polyoxometalate (POM) while addressing its solubility challenges, this study focuses on devising a sustainable catalyst that operates effectively in aqueous environments. Leveraging cyclodextrin (CD) polymer chemistry in conjunction with 3D printing technology, a CD nanosponge, recognized for its interaction with POMs and molecular shuttle attributes, is synthesized as a scaffold for WD immobilization. Through integration into a 3D-printed monolith framework, the supported WD species becomes embedded within the catalyst structure, facilitating its application.
View Article and Find Full Text PDFInjectable bioadhesive hydrogels, known for their capacity to carry substances and adaptability in processing, offer great potential across various biomedical applications. They are especially promising in minimally invasive stem cell-based therapies for treating cartilage damage. This approach harnesses readily available mesenchymal stem cells (MSCs) to differentiate into chondrocytes for cartilage regeneration.
View Article and Find Full Text PDFMulticomponent nanoparticle systems are known for their varied properties and functions, and have shown potential as gene nanocarriers. This study aims to synthesize and characterize ternary nickel-cobalt-ferrite (NiCoFeO) nanoparticles with the potential to serve as gene nanocarriers for cancer/gene therapy. The biogenic nanocarriers were prepared using a simple and eco-friendly method following green chemistry principles.
View Article and Find Full Text PDFDiabetes mellitus is a prevalent chronic health condition that has caused millions of deaths worldwide. Monitoring blood glucose levels is crucial in diabetes management, aiding in clinical decision making and reducing the incidence of hypoglycemic episodes, thereby decreasing morbidity and mortality rates. Despite advancements in glucose monitoring (GM), the development of noninvasive, rapid, accurate, sensitive, selective, and stable systems for continuous monitoring remains a challenge.
View Article and Find Full Text PDFIn this study, we present a novel composite material consisting of β-cyclodextrin nanosponge and sodium alginate, used as a support for the immobilization of palladium (Pd) nanoparticles. The composite alginate-cyclodextrin nanosponge beads were prepared, taking advantage of the 3D polymeric network and β-cyclodextrin cavity of the nanosponge. These beads exhibited excellent encapsulation capabilities for hydrophobic substrates, allowing their transfer in aqueous media.
View Article and Find Full Text PDFRecently, developing antibacterial wound dressings based on biomaterials display good biocompatibility and the potential to accelerate wound healing. For this aim, we prepared eco-friendly and biodegradable nanofibers (NFs) based on N-(3-sulfopropyl)chitosan/ poly (ε-caprolactone) incorporated by zeolite imidazolate framework-8 nanoparticles (ZIF-8 NPs) and chamomile essential oil (MCEO) via the electrospinning technique for their efficacy as wound dressing scaffolds. Fabricated NFs were characterized and studied for their structural, morphological, mechanical, hydrophilic, and thermal stability properties.
View Article and Find Full Text PDFThis study explores the potential of using the carbonization of Zn-based metal-organic frameworks (Zn-MOF-5) under N and air to modify zinc oxide (ZnO) nanoparticle for the production of various photo and bio-active greyish-black cotton fabrics. The MOF-derived ZnO under N demonstrated a significantly higher specific surface area (259 mg) compared to ZnO (12 mg) and MOF-derived ZnO under air (41.6 m g).
View Article and Find Full Text PDFZinc oxide nanoparticles (ZnO NPs) have gained significant attention in the textile industry for their ability to enhance the physicochemical properties of fabrics. In recent years, there has been a growing focus on the development of ZnO-based nanomaterials and their applications for cotton and other fabrics. This review paper provides an overview of the synthesis and diverse applications of ZnO-based nanomaterials for textile fabrics, including protection against UV irradiation, bacteria, fungi, microwave, electromagnetic radiation, water, and fire.
View Article and Find Full Text PDFThis study presents the development and characterization of a nanocomposite material, consisting of thermoplastic starch (TPS) reinforced with bentonite clay (BC) and encapsulated with vitamin B (VB). The research is motivated by the potential of TPS as a renewable and biodegradable substitute for petroleum-based materials in the biopolymer industry. The effects of VB on the physicochemical properties of TPS/BC films, including mechanical and thermal properties, water uptake, and weight loss in water, were investigated.
View Article and Find Full Text PDFUsing cyclodextrin and chitosan that are bio-based compounds, a novel bi-functional catalytic composite is designed, in which metal-organic framework encapsulated phosphomolybdic acid was incorporated in a dual chitosan-cyclodextrin nanosponge bead. The composite was characterized via XRD, TGA, ICP, BET, NH-TPD, FTIR, FE-SEM/EDS, elemental mapping analysis and its catalytic activity was examined in alcohol oxidation and cascade alcohol oxidation-Knoevenagel condensation reaction. It was found that the designed catalyst that possess both acidic feature and redox potential could promote both reactions in aqueous media at 55 °C and various substrates with different electronic features could tolerate the aforementioned reactions to furnish the products in 75-95% yield.
View Article and Find Full Text PDFCationic polysaccharides are capable of forming polyplexes with nucleic acids and are considered promising polymeric gene carriers. The objective of this study was to evaluate the transfection efficiency and cytotoxicity of -[(2-hydroxy-3-trimethylammonium)propyl] chitosan salt (HTCS), a quaternary ammonium derivative of chitosan (CS), which benefits from non-ionizable positive charges. In this work, HTCS with a full quaternization of amino groups and a molar mass of 130,000 g·mol was synthesized to use for delivery of a plasmid encoding the interleukin-12 (IL-12) gene.
View Article and Find Full Text PDFIn this study, a simple and green strategy was reported to prepare bimetallic nanoparticles (NPs) by the combination of zinc oxide (ZnO) and copper oxide (CuO) using Sambucus nigra L. extract. The physicochemical properties of these NPs such as crystal structure, size, and morphology were studied by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), and transmission electron microscopy (TEM).
View Article and Find Full Text PDFConductive polymer composites (CPC) from renewable resources exhibit many interesting characteristics due to their biodegradability and conductivity changes under mechanical, thermal, chemical, or electrical stress. This study is focused on investigating the physical properties of electroconductive thermoplastic starch (TPS)-based composites and changes in electroconductive paths during cyclic deformation. TPS-based composites filled with various carbon black (CB) contents were prepared through melt processing.
View Article and Find Full Text PDFFabrication of porous materials with a high surface area affords a great interest to achieve a system with a prolonged drug release manner. In this context, the subject of this work is to describe a novel green one-pot synthesis route for the growth of metal-organic framework (MOF) from zinc metal (Zn) and 1, 4-benzene dicarboxylic acid (BDC) in the vicinity of the carboxymethyl cellulose (CMC), which homogeneously confined in the biopolymeric chains. The synthesized Zn (BDC)@CMC was characterized and confirmed using different analyses.
View Article and Find Full Text PDFThis study is focused on enhancing the stability of mechanical and chemical properties of thermoplastic starch (TPS) by dual crosslinking strategy through melt processing conditions. The dually crosslinked TPS was prepared by in situ reaction of starch, glycerol, and epichlorohydrin (ECH), resulting in both noncovalent and covalent bond formation. The TPS was characterized by tensile testing, dynamic mechanical analysis (DMTA), rheology, and solubility in water.
View Article and Find Full Text PDFBy industrialization, management of water resources is known as one of the most challenging issues for human society due to the presence of various contaminants such as oil, azo dyes, and micropollutants in water. The treatment of wastewaters containing more than one type of pollutants via a single-step process cannot be performed by a simple adsorption process. In this study, by combining the advantages of superparamagnetic iron oxide, carboxymethyl-β-cyclodextrin polymer, and N-heterocyclic palladium complex, a versatile bi-functionalized iron oxide nanoadsorbent [FeO@CM-β-CDP@Tet-Pd] was fabricated for the capture of toxic dyes in wastewater.
View Article and Find Full Text PDFFor stopping long-time harmful bacterial infection, designing a drug carrier with a highly prolonged release profile is a promising approach that is of interest to different biomedical areas. The subject of this work is to synthesis a novel carrier system through coordination of MIL-88(Fe) to carboxymethyl cellulose (CMC) for enhancing interaction between drug and carrier. We established an ultrasound-assisted synthetic method for in situ synthesis of MIL-88(Fe) in the presence of CMC resulting in CMC/MIL-88(Fe) composite.
View Article and Find Full Text PDF