Cancer is a complicated disease that involves the efforts of researchers to introduce and investigate novel successful treatments. Traditional cancer therapy approaches, especially chemotherapy, are prone to possible systemic side effects, such as the dysfunction of liver or kidney, neurological side effects and a decrease of bone marrow activity. Hydrogels, along with tissue engineering techniques, provide tremendous potential for scientists to overcome these issues through the release of drugs at the site of tumor.
View Article and Find Full Text PDFTissue engineering with the aid of biomaterials is a novel and promising knowledge aiming at improving human life expectancy. Besides, microbubbles are increasingly employed in biomedical applications due to their capability as a reservoir of therapeutic agents and oxygen molecules. In the present study, Microbubbles as the backbone of the research are produced as one of the potent devices in tissue engineering approaches, including drug delivery, wound healing, 3D printing, and scaffolding.
View Article and Find Full Text PDFThe body can't control massive bleeding without treatment. Different hemostatic agents have been prepared recently, but most of them are ineffective in severe bleeding and expensive or cause safety concerns. In this study, in order to achieve fast control of bleeding, we synthesized and characterized fast-swelling porous superabsorbent hydrogel (FSPSH) and investigated its use as a hemostatic agent.
View Article and Find Full Text PDFRecently, hybrid materials using poly ethylene glycol and porous nanocrystals have been developed for drug release. In this study, a series of poly ethylene glycol (PEG)/NaY zeolite and PEG/MCM-41 nanocomposites get synthesized. These materials are characterized using FT-IR spectroscopy, XRD, TGA and SEM.
View Article and Find Full Text PDF