Human skeleton requires an adequate supply of many different nutritional factors for optimal growth and development. The role of nutrition in bone growth has piqued interest in recent years, especially in relation to maximizing peak bone mass and reducing the risk of osteoporosis. Protein deficiency-induced bone loss was induced in female growing rats.
View Article and Find Full Text PDFThe objective of the study was to examine the expression and cellular distribution of key signaling components of the phosphatidylinositol-3-kinase (PI3K)/Phosphatase and Tensin Homolog Deleted on Chromosome Ten (PTEN)/Protein Kinase B (PKB/Akt) pathway during the window of implantation in infertile women with noncavity-distorting intramural uterine fibroids (n = 21) as compared to fertile controls (n = 15). Relative gene expression analysis of PIK3CA, PTEN, Akt1, and Akt2 genes in midluteal endometrial biopsies was performed by real-time polymerase chain reaction. Immunohistochemistry was used to evaluate the expression of PIK3CA, PTEN, phospho-PTEN, Akt1, Akt2, phospho-Akt1 (serine 473), phospho-Akt1 (threonine 308), and Ki67 proteins.
View Article and Find Full Text PDFA series of new 6H-benzofuro[3, 2-c]chromenes (BFC, pterocarpans) with structure-activity relationships were investigated for their potential use in osteoporosis treatment. One of the BFCs 3-piperidylethoxypterocarpan 20 promotes osteoblast differentiation and mineralization at a dose as low as 1 pM via activation of ER/P38MAPK/BMP-2 pathway. When evaluated for in-vivo osteogenic activity in female Sprague-Dawley rats, BFC 20 increased bone mineral density and new bone formation, compared with control at 1.
View Article and Find Full Text PDFWe report a new bone anabolic and anti-catabolic pterocarpan 9-demethoxy-medicarpin (DMM) for the management of postmenopausal osteoporosis. DMM promoted osteoblast functions via activation of P38MAPK/BMP-2 pathway and suppressed osteoclastogenesis in bone marrow cells (BMCs). In calvarial osteoblasts, DMM blocked nuclear factor kappaB (NFκB) signaling and inhibited the mRNA levels of pro-inflammatory cytokines.
View Article and Find Full Text PDFA convenient synthesis of natural and synthetic pterocarpans was achieved in three steps. Optical resolution of the respective enantiomers was accomplished by analytical and semi-preparative HPLC on a chiral stationary phase. For medicarpin and its synthetic derivative 9-demethoxymedicarpin, the absolute configuration was confirmed by a combination of experimental LC-ECD coupling and quantum-chemical ECD calculations.
View Article and Find Full Text PDFDietary isoflavones including genistein and daidzein have been shown to have favorable bone conserving effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of medicarpin (Med); a phytoalexin that is structurally related to isoflavones and is found in dietary legumes. Med stimulated osteoblast differentiation and mineralization at as low as 10⁻¹⁰ M.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2011
A series of didzein derivatives were synthesized and assessed for stimulation of osteoblast differentiation using primary cultures of rat calvarial osteoblasts. Data suggested that three synthetic analogs, 1c, 3a and 3c were several folds more potent than daidzein in stimulating differentiation and mineralization of osteoblasts. Further, these three compounds did not show any estrogen agonistic activity, however had mild estrogen antagonistic effect.
View Article and Find Full Text PDFDietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway.
View Article and Find Full Text PDFMedicarpin, a pterocarpan class of naturally occurring benzopyran furanobenzene compound was synthesized in gram scale to investigate its effects on murine bone cells and in ovariectomized (OVx) mice. Medicarpin, at as low as 10(-10)M suppressed osteoclastogenesis in bone marrow cells (BMCs). Medicarpin-induced apoptosis of mature osteoclasts isolated from long bones.
View Article and Find Full Text PDFThe objective of this study was to determine the in vitro osteogenic activities of selected medicinal plants used traditionally in India. The compounds isolated from three plants viz. Allophylus serratus, Cissus quadrangularis and Vitex negundo were evaluated for their in vitro osteogenic activities.
View Article and Find Full Text PDFObjective: The aim of this study was to determine the skeletal effects of Butea total extract (BTE) and its acetone soluble fraction (ASF) from Butea monosperma, which is rich in methoxyisoflavones, in ovariectomized (OVx) rats, a model for postmenopausal bone loss.
Methods: BTE (1.0 g kg d) and ASF (100 mg kg d) were given orally for 12 weeks to adult OVx rats.
Kaempferol, a flavonoid, promotes osteoblast mineralization in vitro and bone formation in vivo; however, its mechanism of action is yet unknown. We adopted proteomic approach to identify the differential effect of kaempferol on rat primary calvarial osteoblasts during mineralization. The primary rat calvarial osteoblasts were treated with kaempferol (5.
View Article and Find Full Text PDFFollowing a lead obtained from stem-bark extract of Butea monosperma, two structurally related methoxyisoflavones; cajanin and isoformononetin were studied for their effects in osteoblasts. Cajanin had strong mitogenic as well as differentiation-promoting effects on osteoblasts that involved subsequent activation of MEK-Erk and Akt pathways. On the other hand, isoformononetin exhibited potent anti-apoptotic effect in addition to promoting osteoblast differentiation that involved parallel activation of MEK-Erk and Akt pathways.
View Article and Find Full Text PDF