The preservation of cultural heritage, particularly historical stone structures, represents a very challenging matter due to several environmental and anthropogenic factors. Vicenza stone, a calcareous rock known for its historical significance and widespread use in architectural masterpieces, requires significant attention for conservation. In fact, as the demand for sustainable and effective preservation methods intensifies, the exploration of innovative consolidation strategies becomes essential.
View Article and Find Full Text PDFThis research explores the new perspectives in conservation and protection of two macroporous tuff stones, widely employed in the architectural heritage of Campania region, characterized by highly heterogeneous rock fabric and texture and a variable mineralogical composition that represent crucial factors responsible for their weak durability. The consolidation treatments were performed with a recently and widely used suspension of nano-silica crystals in water and with a lithium silicate solution that has received up to now scarce attention as a consolidant agent. Physical investigations (open porosity, Hg porosimetry, water absorption), morphological observations (SEM analyses) and visual appearance test (colorimetric measurements), along with assessments of performance indicators such as ultrasonic pulse velocity, surface cohesion test (peeling test) and durability test (salt crystallization), were carried out to investigate the consolidation effectiveness.
View Article and Find Full Text PDFA great challenge of research is the utilization of natural or synthetic zeolites, in place of natural pozzolans, for manufacturing blended cements. The difficulties of interpretation of the pozzolanic behavior of natural zeolite-rich materials and the role played by their nature and composition can be overcome by studying more simple systems, such as pure synthetic zeolites. This study aims at investigating the pozzolanic ability of isostructural zeolites with different framework compositions, such as three sodium zeolites of the faujasite (FAU) framework type: LSX, X, and Y.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
May 2012
This article aims to find a reliable procedure by which to remove Cd(2+) from water and store it safely. The proposed procedure includes Cd(2+) uptake by a zeolitic tuff, a natural cation exchanger, followed by stabilization of the contaminated solid in a hardened lime matrix. Several tuff-lime pastes were examined and their safety tested by cation leaching and mechanical strength measurement.
View Article and Find Full Text PDFThis research provides possible opportunities in the reuse of waste and particularly muds, coming from both ornamental stone (granite sludges from sawing and polishing operations) and ceramic production (porcelain stoneware tile polishing sludge), for the manufacture of lightweight aggregates. Lab simulation of the manufacturing cycle was performed by pelletizing and firing the waste mixes in a rotative furnace up to 1300 degrees C, and determining composition and physicomechanical properties of lightweight aggregates. The best formulation was used to produce and test lightweight structural concretes according to standard procedures.
View Article and Find Full Text PDF