Publications by authors named "Abishek Balachandran"

Purpose: Airway wall thickening is a consequence of chronic inflammatory processes and usually only qualitatively described in CT radiology reports. The purpose of this study is to automatically quantify airway wall thickness in multiple airway generations and assess the diagnostic potential of this parameter in a large cohort of patients with Chronic Obstructive Pulmonary Disease (COPD).

Materials And Methods: This retrospective, single-center study included a series of unenhanced chest CTs.

View Article and Find Full Text PDF

Purpose: To present a method that automatically detects, subtypes, and locates acute or subacute intracranial hemorrhage (ICH) on noncontrast CT (NCCT) head scans; generates detection confidence scores to identify high-confidence data subsets with higher accuracy; and improves radiology worklist prioritization. Such scores may enable clinicians to better use artificial intelligence (AI) tools.

Materials And Methods: This retrospective study included 46 057 studies from seven "internal" centers for development (training, architecture selection, hyperparameter tuning, and operating-point calibration; = 25 946) and evaluation ( = 2947) and three "external" centers for calibration ( = 400) and evaluation ( = 16764).

View Article and Find Full Text PDF

Objectives: Chest radiographs (CXRs) are commonly performed in emergency units (EUs), but the interpretation requires radiology experience. We developed an artificial intelligence (AI) system (precommercial) that aims to mimic board-certified radiologists' (BCRs') performance and can therefore support non-radiology residents (NRRs) in clinical settings lacking 24/7 radiology coverage. We validated by quantifying the clinical value of our AI system for radiology residents (RRs) and EU-experienced NRRs in a clinically representative EU setting.

View Article and Find Full Text PDF

Purpose: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations.

Materials And Methods: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning.

View Article and Find Full Text PDF

The interpretation of medical images is a challenging task, often complicated by the presence of artifacts, occlusions, limited contrast and more. Most notable is the case of chest radiography, where there is a high inter-rater variability in the detection and classification of abnormalities. This is largely due to inconclusive evidence in the data or subjective definitions of disease appearance.

View Article and Find Full Text PDF

Purpose: To present a method that automatically segments and quantifies abnormal CT patterns commonly present in coronavirus disease 2019 (COVID-19), namely ground glass opacities and consolidations.

Materials And Methods: In this retrospective study, the proposed method takes as input a non-contrasted chest CT and segments the lesions, lungs, and lobes in three dimensions, based on a dataset of 9749 chest CT volumes. The method outputs two combined measures of the severity of lung and lobe involvement, quantifying both the extent of COVID-19 abnormalities and presence of high opacities, based on deep learning and deep reinforcement learning.

View Article and Find Full Text PDF