Background: The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z.
View Article and Find Full Text PDFPhytophagous insects differ in their degree of specialization to their host plants. It ranges from monophagous or oligophagous species that can only develop on a single host plant, or family of host plants, to extremely polyphagous species that can develop on plants from many distinct botanical families. The aim of this study was to compare the larval performance and adult preference of a highly generalist species, the Queensland fruit fly () and a highly specialist species, the breadfruit fruit fly () among several fruits covering both species' host range.
View Article and Find Full Text PDFThe relative importance of ecological factors and species interactions for shaping species distributions is still debated. The realised niches of eight sympatric tephritid fruit flies were inferred from field abundance data using joint species distribution modelling and network inference, on the whole community and separately on three host plant groups. These estimates were then confronted the fundamental niches of seven fly species estimated through laboratory-measured fitnesses on host plants.
View Article and Find Full Text PDFIn most phytophagous insects, larvae are less mobile than adults and their fitness depends on the plant chosen by their mother. To maximize fitness, adult preference and larval performance should thus be correlated. This correlation is not always apparent and seems to increase with the level of specialisation, i.
View Article and Find Full Text PDFBackground: Phytophagous insects differ in their degree of specialisation on host plants, and range from strictly monophagous species that can develop on only one host plant to extremely polyphagous species that can develop on hundreds of plant species in many families. Nutritional compounds in host fruits affect several larval traits that may be related to adult fitness. In this study, we determined the relationship between fruit nutrient composition and the degree of host specialisation of seven of the eight tephritid species present in La Réunion; these species are known to have very different host ranges in natura.
View Article and Find Full Text PDF