The effect of the variation of CNC concentration on the growth pattern of CNC-XG films is investigated. We found that a transition in the growth slope occurs at a CNC concentration of roughly 3-4gL(-1). A close effect can be obtained by the increase of the ionic strength of the CNC suspensions, suggesting that electrostatic interactions are involved.
View Article and Find Full Text PDFIn this work, the adsorption of a neutral flexible polysaccharide, xyloglucan (XG), onto thin cellulose nanocrystal (CNC) surfaces has been investigated to get more insight into the CNC-XG association. Gold-coated quartz crystals were spin-coated with one layer of CNC, and XG adsorption was monitored in situ using a quartz crystal microbalance with dissipation (QCM-D). The adsorption of XG under flow at different concentrations did not result in the same surface concentration, which evidenced a kinetically controlled process.
View Article and Find Full Text PDFXyloglucan (XG) is believed to act as a cementing material that contributes to the cross-linking and mechanical properties of the cellulose framework in plant cell walls. XG can adsorb to the cellulose nanocrystal (CNC) surface in vitro in order to simulate this in vivo relationship. The target of our work was to investigate the sorption behavior of tamarind seed XG on CNC extracted from cotton linters at different XG/CNC concentration ratios, that is, different adsorption regimes regarding the XG-CNC complex organization and the enzymatic susceptibility of XG.
View Article and Find Full Text PDFChallenges today concern chronic myeloid leukemia (CML) patients resistant to imatinib. There is growing evidence that imatinib-resistant leukemic cells present abnormal glucose metabolism but the impact on mitochondria has been neglected. Our work aimed to better understand and exploit the metabolic alterations of imatinib-resistant leukemic cells.
View Article and Find Full Text PDF