Cost-effective, representative and spatial coverage sampling designs are required to monitor the effects of potentially toxic elements (PTEs) in the soil. This study aims to evaluate the minimum sample sizes and placement of soil sampling designs to monitor and characterize the spatial variation of the PTEs (Cu, Zn, Cd, Cr, Pb, and Ni) in the soils. However, there is no standardized approach for evaluating the optimum soil sample size and monitoring location because of the spatial heterogeneity of PTEs in the soil.
View Article and Find Full Text PDFSampling design in soil science is critical because the lack of reliable methods and collecting samples requires tremendous work and resources. The aims were to obtain an optimal sampling design for assessing potentially toxic elements pollution using pilot Pb soil samples from the urban green space area of Shanghai, China. Two general steps have been used.
View Article and Find Full Text PDFInt J Environ Res Public Health
April 2021
High concentrations of potentially toxic elements (PTE) create global environmental stress due to the crucial threat of their impacts on the environment and human health. Therefore, determining the concentration levels of PTE and improving their prediction accuracy by sampling optimization strategy is necessary for making sustainable environmental decisions. The concentrations of five PTEs (Pb, Cd, Cr, Cu, and Zn) were compared with reference values for Shanghai and China.
View Article and Find Full Text PDF