Fe(II) , Co(II) and Ni(II) complexes of two tetraazamacrocycles (1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (L1) and 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (L2) show promise as paraCEST agents for registration of temperature (paraCEST=paramagnetic chemical exchange saturation transfer). The Fe(II) , Co(II) and Ni(II) complexes of L1 show up to four CEST peaks shifted ≤112 ppm, whereas analogous complexes of L2 show only a single CEST peak at ≤69 ppm. Comparison of the temperature coefficients (CT ) of the CEST peaks of [Co(L2)](2+) , [Fe(L2)](2+) , [Ni(L1)](2+) and [Co(L1)](2+) showed that a CEST peak of [Co(L1)](2+) gave the largest CT (-0.
View Article and Find Full Text PDFThe solution chemistry and solid-state structures of the Co(II), Fe(II), and Ni(II) complexes of 7,13-bis(carbamoylmethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L) are reported as members of a new class of paramagnetic chemical exchange saturation transfer (paraCEST) MRI contrast agents that contain transition metal ions. Crystallographic data show that nitrogen and oxygen donor atoms of the macrocyclic ligand coordinate to the metal ions to generate complexes with distorted pentagonal bipyramidal geometry for [Co(L)]Cl2·2H2O or [Fe(L)](CF3SO3)2. The Ni(II) complex [Ni(L)](CF3SO3)2·H2O features a hexadentate ligand in a distorted octahedral geometry.
View Article and Find Full Text PDFJ Biol Inorg Chem
February 2014
Transition-metal-ion-based paramagnetic chemical exchange saturation transfer (paraCEST) agents are a promising new class of compounds for magnetic resonance imaging (MRI) contrast. Members in this class of compounds include paramagnetic complexes of Fe(II), Co(II), and Ni(II). The development of the coordination chemistry for these paraCEST agents is presented with an emphasis on the choice of the azamacrocycle backbone and pendent groups with the goals of controlling the oxidation state, spin state, and stability of the complexes.
View Article and Find Full Text PDFThe first examples of air-stable Co(II) paraCEST MRI contrast agents are reported. Amide NH protons on the complexes give rise to CEST peaks that are shifted up to 112 ppm from the bulk water resonance. One complex has multiple CEST peaks that may be useful for ratiometric mapping of pH.
View Article and Find Full Text PDFSubstitution of a nucleobase pair with a pair of 1,2-hydroxypyridinone (1,2-HOPO) ligands in the center of a 10-base-pair peptide nucleic acid (PNA) duplex provides a strong binding site for Eu(III) as evidenced by UV thermal melting curves, UV titrations, and luminescence spectroscopy. Eu(III) excitation spectra and luminescence lifetime data are consistent with Eu(III) bound to both 1,2 HOPO ligands in a PNA-HOPO duplex as the major species present in solution.
View Article and Find Full Text PDFParamagnetic Ni(II) complexes are shown here to form paraCEST MRI contrast agents (paraCEST = paramagnetic chemical exchange saturation transfer; NiCEST = Ni(II) based CEST agents). Three azamacrocycles with amide pendent groups bind Ni(II) to form stable NiCEST contrast agents including 1,4,7-tris(carbamoylmethyl)-1,4,7-triazacyclononane (L1), 1,4,8,11-tetrakis(carbamoylmethyl)-1,4,8,11-tetraazacyclotetradecane (L2), and 7,13-bis(carbamoylmethyl)-1,4,10-trioxa-7,13-diazacyclopentadecane (L3). [Ni(L3)](2+), [Ni(L1)](2+), and [Ni(L2)](2+) have CEST peaks attributed to amide protons that are shifted 72, 76, and 76 ppm from the bulk water resonance, respectively.
View Article and Find Full Text PDF