The repair of large bone defects due to trauma, disease, and infection can be exceptionally challenging in the elderly. Despite best clinical practice, bone regeneration within contemporary, surgically implanted synthetic scaffolds is often problematic, inconsistent, and insufficient where additional osteobiological support is required to restore bone. Emergent smart multifunctional biomaterials may drive important and dynamic cellular crosstalk that directly targets, signals, stimulates, and promotes an innate bone repair response following age-related biological decline and when in the presence of disease or infection.
View Article and Find Full Text PDFHemorrhage is one of the leading causes of preventable death. While minor injuries can be treated mainly by conventional methods, deep and irregular wounds with profuse bleeding present significant challenges, some of which can be life-threatening and fatal. This underscores the need to develop easily applicable FDA-approved hemostatic treatments that can effectively stanch blood loss at the point of care before professional medical care.
View Article and Find Full Text PDFThe fabrication of customized implants by additive manufacturing has allowed continued development of the personalized medicine field. Herein, a 3D-printed bioabsorbable poly (lactic acid) (PLA)- β-tricalcium phosphate (TCP) (10 wt %) composite has been modified with CeO nanoparticles (CeNPs) (1, 5 and 10 wt %) for bone repair. The filaments were prepared by melt extrusion and used to print porous scaffolds.
View Article and Find Full Text PDFPeriprosthetic joint infection (PJI) is a challenging complication that can occur following joint replacement surgery. Efficacious strategies to prevent and treat PJI and its recurrence remain elusive. Commensal bacteria within the gut convey beneficial effects through a defense strategy named "colonization resistance" thereby preventing pathogenic infection along the intestinal surface.
View Article and Find Full Text PDFRadiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy.
View Article and Find Full Text PDFDue to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms.
View Article and Find Full Text PDFMultifunctional nanosized particles are very beneficial in the field of biomedicine. Bioactive and highly biocompatible calcium phosphate (CaP) nanoparticles (∼50 nm) exhibiting both superparamagnetic and fluorescence properties were synthesized by incorporating dual ions (Fe and Sr) in HAp (hydroxyapatite) [Ca(PO)(OH)]. Insertion of Fe creates oxygen vacancies at the PO site, thereby destabilizing the structure.
View Article and Find Full Text PDF