Publications by authors named "Abinaya Rajendran"

The sirtuins and histone deacetylases are the best characterized members of the lysine deacetylase (KDAC) enzyme family. Recently, we annotated the "orphan" enzyme ABHD14B (α/β-hydrolase domain containing protein # 14B) as a novel KDAC and showed this enzyme's ability to transfer an acetyl-group from protein lysine residue(s) to coenzyme-A to yield acetyl-coenzyme-A, thereby, expanding the repertoire of this enzyme family. However, the role of ABHD14B in metabolic processes is not fully elucidated.

View Article and Find Full Text PDF

Mycobacteria harbor a unique class of adenylyl cyclases with a complex domain organization consisting of an N-terminal putative adenylyl cyclase domain fused to a nucleotide-binding adaptor shared by apoptotic protease-activating factor-1, plant resistance proteins, and CED-4 (NB-ARC) domain, a tetratricopeptide repeat (TPR) domain, and a C-terminal helix-turn-helix (HTH) domain. The products of the rv0891c-rv0890c genes represent a split gene pair, where Rv0891c has sequence similarity to adenylyl cyclases, and Rv0890c harbors the NB-ARC-TPR-HTH domains. Rv0891c had very low adenylyl cyclase activity so it could represent a pseudoenzyme.

View Article and Find Full Text PDF

Inefficient physiological transitions are known to cause metabolic disorders. Therefore, investigating mechanisms that constitute molecular switches in a central metabolic organ like the liver becomes crucial. Specifically, upstream mechanisms that control temporal engagement of transcription factors, which are essential to mediate physiological fed-fast-refed transitions are less understood.

View Article and Find Full Text PDF

The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate.

View Article and Find Full Text PDF

The alarming global rise in fatalities from multidrug-resistant () infections has underscored a need to develop new therapies to address this epidemic. Chemoproteomics is valuable in identifying targets for new drugs in different human diseases including bacterial infections. Targeting functional cysteines is particularly attractive, as they serve critical catalytic functions that enable bacterial survival.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are transient, highly reactive intermediates or byproducts produced during oxygen metabolism. However, when innate mechanisms are unable to cope with sequestration of surplus ROS, oxidative stress results, in which excess ROS damage biomolecules. Oxidized phosphatidylserine (PS), a proapoptotic 'eat me' signal, is produced in response to elevated ROS, yet little is known regarding its chemical composition and metabolism.

View Article and Find Full Text PDF

Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract (PHARC) is a rare genetic human neurological disorder caused by null mutations to the gene, which encodes the integral membrane serine hydrolase enzyme ABHD12. Although the role that ABHD12 plays in PHARC is understood, the thorough biochemical characterization of ABHD12 is lacking. Here, we report the facile synthesis of mono-1-(fatty)acyl-glycerol lipids of varying chain lengths and unsaturation and use this lipid substrate library to biochemically characterize recombinant mammalian ABHD12.

View Article and Find Full Text PDF

GAF domains are a large family of regulatory domains, and a subset are found associated with enzymes involved in cyclic nucleotide (cNMP) metabolism such as adenylyl cyclases and phosphodiesterases. CyaB2, an adenylyl cyclase from Anabaena, contains two GAF domains in tandem at the N-terminus and an adenylyl cyclase domain at the C-terminus. Cyclic AMP, but not cGMP, binding to the GAF domains of CyaB2 increases the activity of the cyclase domain leading to enhanced synthesis of cAMP.

View Article and Find Full Text PDF