Publications by authors named "Abigail S Hackam"

The optic nerve contains retinal ganglion cell (RGC) axons and functions to transmit visual stimuli to the brain. Injury to the optic nerve from ischemia, trauma, or disease leads to retrograde axonal degeneration and subsequent RGC dysfunction and death, causing irreversible vision loss. Inflammatory responses to neurological damage and axonal injuries in the central nervous system (CNS) are typically harmful to neurons and prevent recovery.

View Article and Find Full Text PDF

In this review, we explore the connections between developmental embryology and axonal regeneration. Genes that regulate embryogenesis and central nervous system (CNS) development are discussed for their therapeutic potential to induce axonal and cellular regeneration in adult tissues after neuronal injury. Despite substantial differences in the tissue environment in the developing CNS compared with the injured CNS, recent studies have identified multiple molecular pathways that promote axonal growth in both scenarios.

View Article and Find Full Text PDF

There is increasing interest in nonpharmacologic approaches to protect retinal ganglion cells (RGCs) after injury and enhance the efficacy of therapeutic molecules. Accumulating evidence demonstrates neuroprotection by the high-fat low-carbohydrate ketogenic diet (KD) in humans and animal models of neurologic diseases. However, no studies to date have examined whether the KD protects RGCs and promotes axonal regrowth after traumatic injury to the optic nerve (ON) or whether it increases efficacy of experimental proregenerative molecules.

View Article and Find Full Text PDF

Background: Diabetic retinopathy (DR) afflicts more than 93 million people worldwide and is a leading cause of vision loss in working adults. While DR therapies are available, early DR development may go undetected without treatment due to the lack of sufficiently sensitive tools. Therefore, early detection is critically important to enable efficient treatment before progression to vision-threatening complications.

View Article and Find Full Text PDF

Background: Optic nerve trauma caused by crush injury is frequently used for investigating experimental treatments that protect retinal ganglion cells (RGCs) and induce axonal regrowth. Retaining outer retinal light responses is essential for therapeutic rescue of RGCs after injury. However, whether optic nerve crush also damages the structure or function of photoreceptors has not been systematically investigated.

View Article and Find Full Text PDF

Background: Retinal degenerative diseases are a group of conditions characterized by photoreceptor death and vision loss. Excessive inflammation and microglial activation contribute to the pathology of retinal degenerations and a major focus in the field is identifying more effective anti-inflammatory therapeutic strategies that promote photoreceptor survival. A major challenge to developing anti-inflammatory treatments is to selectively suppress detrimental inflammation while maintaining beneficial inflammatory responses.

View Article and Find Full Text PDF

Canonical and noncanonical Wnt signaling pathways are essential for development and maintenance of the CNS. Whereas the roles of canonical Wnt pathways in neuronal survival and axonal regeneration in adult CNS have been described, the functions of noncanonical Wnt pathways are not well understood. Furthermore, the role of noncanonical Wnt ligands in the adult retina has not been investigated.

View Article and Find Full Text PDF

Interleukin-27 is a pleiotropic cytokine that is involved in tissue responses to infection, cell stress, neuronal disease, and tumors. Recent studies in various tissues indicate that interleukin-27 has complex activating and inhibitory properties in innate and acquired immunity. The availability of recombinant interleukin-27 protein and mice with genetic deletions of interleukin-27, its receptors and signaling mediators have helped define the role of interleukin-27 in neurodegenerative diseases.

View Article and Find Full Text PDF

The ketogenic diet (KD) is a high-fat low-carbohydrate diet that has been used for decades as a non-pharmacologic approach to treat metabolic disorders and refractory pediatric epilepsy. In recent years, enthusiasm for the KD has increased in the scientific community due to evidence that the diet reduces pathology and improves various outcome measures in animal models of neurodegenerative disorders, including multiple sclerosis, stroke, glaucoma, spinal cord injury, retinal degenerations, Parkinson's disease and Alzheimer's disease. Clinical trials also suggest that the KD improved quality of life in patients with multiple sclerosis and Alzheimer's disease.

View Article and Find Full Text PDF

Progressive photoreceptor death occurs in blinding diseases such as retinitis pigmentosa. Myeloid differentiation primary response protein 88 (MyD88) is a central adaptor protein for innate immune system Toll-like receptors (TLR) and induces cytokine secretion during retinal disease. We recently demonstrated that inhibiting MyD88 in mouse models of retinal degeneration led to increased photoreceptor survival, which was associated with altered cytokines and increased neuroprotective microglia.

View Article and Find Full Text PDF

Importance: The ocular surface is continuously exposed to the environment. Although studies have focused on associations between outdoor environmental conditions and dry eye, information on associations between the indoor environment and dry eye is lacking.

Objective: To determine associations between the indoor environment and dry eye.

View Article and Find Full Text PDF

Muller glia are the predominant glial cell type in the retina, and they structurally and metabolically support retinal neurons. Wnt/β-catenin signaling pathways play essential roles in the central nervous system, including glial and neuronal differentiation, axonal growth, and neuronal regeneration. We previously demonstrated that Wnt signaling activation in retinal ganglion cells (RGC) induces axonal regeneration after injury.

View Article and Find Full Text PDF

Myeloid differentiation factor 88 (MyD88) is an adaptor protein for the Toll-like receptor (TLR) and interleukin 1 receptor (IL-1R) families of innate immunity receptors that mediate inflammatory responses to cellular injury. TLR/IL1R/MyD88 signaling is known to contribute to retinal degeneration, although how MyD88 regulates neuronal survival, and the effect of MyD88 on the inflammatory environment in the retina, is mostly unknown. In this study, we tested the hypothesis that blocking MyD88-mediated signaling early in retinal degeneration promotes transition of microglia towards a neuroprotective anti-inflammatory phenotype, resulting in enhanced photoreceptor survival.

View Article and Find Full Text PDF

Growth cones (GCs) are structures associated with growing neurons. GC membrane expansion, which necessitates protein-lipid interactions, is critical to axonal elongation in development and in adult neuritogenesis. We present a multi-omic analysis that integrates proteomics and lipidomics data for the identification of GC pathways, cell phenotypes, and lipid-protein interactions, with an analytic platform to facilitate the visualization of these data.

View Article and Find Full Text PDF

Dry eye (DE) and allergic conjunctivitis may present similarly, and it remains unclear whether some individuals have an underlying allergic component to their DE. To better understand this relationship, we performed a cross-sectional study in 75 individuals with DE symptoms and/or signs. Immunoglobulin E (IgE) levels in tear samples were quantified and home environmental exposures assessed via standardized survey.

View Article and Find Full Text PDF

We present lipid profiling data from mouse retina and optic nerve after optic nerve crush and during Wnt3a-induced axonal regeneration at 7 and 15 days post-crush. This data is available at the Metabolomics Workbench, http://www.metabolomicsworkbench.

View Article and Find Full Text PDF

Purpose: Our eyes are chronically exposed to airborne particulate matter shown to adversely affect the ocular surface. This research examines size, type (organic vs. inorganic), and elemental composition of particles recovered from the ocular surface in 2 environments and their associations with dry eye (DE) metrics.

View Article and Find Full Text PDF

Wingless-type (Wnt) signaling pathways mediate axonal growth and remodeling in the embryonic optic nerve, brain and spinal cord. Recent studies demonstrated that the canonical Wnt/β-catenin signaling pathway also induces axonal regeneration after injury in the optic nerve of adult animals. However, the molecular mechanisms of Wnt-mediated axonal growth are not well understood.

View Article and Find Full Text PDF

Purpose: To compare dry eye (DE) diagnosis patterns by season in Miami vis-a-vis the US and examine differences in DE symptoms and signs by season in Miami.

Patients And Methods: US veteran affairs (VA) patient visits with ICD-9 codes for DE (375.15) and routine medical examination (V70.

View Article and Find Full Text PDF

The canonical Wnt/β-catenin pathway is a highly conserved signaling cascade that plays critical roles during embryogenesis. Wnt ligands regulate axonal extension, growth cone guidance and synaptogenesis throughout the developing central nervous system (CNS). Recently, studies in mammalian and fish model systems have demonstrated that Wnt/β-catenin signaling also promotes axonal regeneration in the adult optic nerve and spinal cord after injury, raising the possibility that Wnt could be developed as a therapeutic strategy.

View Article and Find Full Text PDF

Purpose: To demonstrate the application of scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM/EDS) for analyzing Schirmer strips for particle concentration, size, morphology, and type distribution.

Methods: A cross-sectional design was used. Patients were prospectively recruited from the Miami Veterans Affairs (VA) Healthcare System eye clinic, and they underwent a complete ocular surface examination.

View Article and Find Full Text PDF

Adult mammalian CNS axons generally do not regenerate, creating an obstacle to effective repair and recovery after neuronal injury. The canonical Wnt/β-catenin signaling pathway is an essential signal transduction cascade that regulates axon growth and neurite extension in the developing mammalian embryo. In this study, we investigated whether a Wnt/β-catenin signaling activator could be repurposed to induce regeneration in the adult CNS after axonal injury.

View Article and Find Full Text PDF

Objective: Retinal degenerations are a class of devastating blinding diseases that are characterized by photoreceptor dysfunction and death. In this study, we tested whether grape consumption, in the form of freeze-dried grape powder (FDGP), improves photoreceptor survival in a mouse model of retinal degeneration.

Methods: Retinal degeneration was induced in mice by acute oxidative stress using subretinal injection of paraquat.

View Article and Find Full Text PDF

Purpose: The purpose of this study was to identify how changes in retinal structure and function correlate with visual deficits during increasing amounts of retinal degeneration.

Materials And Methods: Retinal degeneration was induced in adult mice by subretinal injections of paraquat (PQ) (0.2-1 mM).

View Article and Find Full Text PDF

Purpose: Serotonin, a neurotransmitter known to be involved in nociceptor sensitization, is present in human tears. The purpose of this study was to correlate tear serotonin levels, as a marker of nociceptor sensitization, to facets of dry eye (DE), including symptoms and signs.

Design: Cross-sectional study.

View Article and Find Full Text PDF