Publications by authors named "Abigail Mackey"

Short-term disuse leads to rapid declines in muscle mass and strength. These declines are driven by changes at all levels of the neuromuscular system; the brain, spinal cord and skeletal muscle. In addition to neural input from the central and peripheral nervous systems to the muscle, molecular factors originating in the muscle can be transported to the central nervous system.

View Article and Find Full Text PDF

The myotendinous junction (MTJ) is a weak link in the musculoskeletal system. Here, we isolated the tips of single myofibres from healthy human hamstring muscles for confocal microscopy (n=6) and RNAscope in situ hybridisation (n=6) to gain insight into the profiles of cells and myonuclei in this region, in a fibre type manner. A marked presence of mononuclear cells was observed coating the myofibre tips (confirmed by serial block face scanning electron microscopy and cryosection immunofluorescence), with higher numbers for type I (median 29; range 16-63) than type II (16; 9-23) myofibres (p<0.

View Article and Find Full Text PDF

Exercise preserves neuromuscular function in aging through unknown mechanisms. Skeletal muscle fibroblasts (FIB) and stem cells (MuSC) are abundant in skeletal muscle and reside close to neuromuscular junctions, but their relative roles in motor neuron maintenance remain undescribed. Using direct cocultures of embryonic rat motor neurons with either human MuSC or FIB, RNA sequencing revealed profound differential regulation of the motor neuron transcriptome, with FIB generally favoring neuron growth and cell migration and MuSC favoring production of ribosomes and translational machinery.

View Article and Find Full Text PDF

A major challenge in sports medicine is to facilitate the fastest possible recovery from injury without increasing the risk of subsequent reruptures, and thus effective rehabilitation programs should balance between these two factors. The present review focuses on examining the role of different resistance training interventions in rehabilitation of acute muscle strain in the time frame from injury until return to sport (RTS), the rate of reinjuries, and tissue changes after injury. Randomized, controlled trials dealing with a component of resistance training in their rehabilitation protocols, as well as observational studies on tissue morphology and tissue changes as a result to muscle strain injuries, were included.

View Article and Find Full Text PDF
The Myotendinous Junction-Form and Function.

Cold Spring Harb Perspect Biol

August 2024

A critical link in the chain of force transmission from muscle fiber cross-bridge to bone is the interface between muscle and tendon-the myotendinous junction (MTJ). To meet the challenge of connecting these two tissues, the MTJ is specialized molecularly and morphologically. Distinct transcriptional profiles are evident for the myonuclei at the myofiber tips and a population of mononuclear tendon cells at the MTJ, demonstrating support from both sides in MTJ maintenance.

View Article and Find Full Text PDF

Prematurity has physical consequences, such as lower birth weight, decreased muscle mass and increased risk of adult-onset metabolic disease. Insulin-like growth factor 1 (IGF-1) has therapeutic potential to improve the growth and quality of muscle and tendon in premature births, and thus attenuate some of these sequalae. We investigated the effect of IGF-1 on extensor carpi radialis muscle and biceps brachii tendon of preterm piglets.

View Article and Find Full Text PDF

Background: Early-onset osteoporosis is a frequent late effect after pediatric hematopoietic stem cell transplantation (HSCT). It remains unknown if physical training can improve bone formation in these patients, as the transplantation procedure may cause sustained dysregulation of the bone-forming osteoblast progenitor cells.

Objective: We aimed to explore the effect of resistance training on bone remodeling in long-term survivors of pediatric HSCT.

View Article and Find Full Text PDF

Morphological studies of skeletal muscle tissue provide insights into the architecture of muscle fibers, the surrounding cells, and the extracellular matrix (ECM). However, a spatial proteomics analysis of the skeletal muscle including the muscle-tendon transition zone is lacking. Here, we prepare cryotome muscle sections of the mouse soleus muscle and measure each slice using short liquid chromatography-mass spectrometry (LC-MS) gradients.

View Article and Find Full Text PDF

Background: Plantar fasciitis is a painful tendinous condition (tendinopathy) with a high prevalence in athletes. While a healthy tendon has limited blood flow, ultrasound has indicated elevated blood flow in tendinopathy, but it is unknown if this is related to a de facto increase in the tendon vasculature. Likewise, an accumulation of glycosaminoglycans (GAGs) is observed in tendinopathy, but its relationship to clinical pain is unknown.

View Article and Find Full Text PDF

Denervated myofibers and senescent cells are hallmarks of skeletal muscle aging. However, sparse research has examined how resistance training affects these outcomes. We investigated the effects of unilateral leg extensor resistance training (2 days/week for 8 weeks) on denervated myofibers, senescent cells, and associated protein markers in apparently healthy middle-aged participants (MA, 55 ± 8 years old, 17 females, 9 males).

View Article and Find Full Text PDF

Background: Age-related loss of strength is disproportionally greater than the loss of mass, suggesting maladaptations in the neuro-myo-tendinous system. Myofibers are often misshaped in aged and diseased muscle, but systematic analyses of large sample sets are lacking. Our aim was to investigate myofiber shape in relation to age, exercise, myofiber type, species and sex.

View Article and Find Full Text PDF

Traumatic muscle injury represents a collection of skeletal muscle pathologies caused by trauma to the muscle tissue and is defined as damage to the muscle tissue that can result in a functional deficit. Traumatic muscle injury can affect people across the lifespan and can result from high stresses and strains to skeletal muscle tissue, often due to muscle activation while the muscle is lengthening, resulting in indirect and non-contact muscle injuries (strains or ruptures), or from external impact, resulting in direct muscle injuries (contusion or laceration). At a microscopic level, muscle fibres can repair focal damage but must be completely regenerated after full myofibre necrosis.

View Article and Find Full Text PDF

Background: The occurrence of hyperplasia, through myofibre splitting, remains a widely debated phenomenon. Structural alterations and fibre typing of skeletal muscle fibres, as seen during regeneration and in certain muscle diseases, can be challenging to interpret. Neuromuscular electrical stimulation can induce myofibre necrosis followed by changes in spatial and temporal cellular processes.

View Article and Find Full Text PDF

Mechanisms underlying mechanical overload-induced skeletal muscle hypertrophy have been extensively researched since the landmark report by Morpurgo (1897) of "work-induced hypertrophy" in dogs that were treadmill trained. Much of the preclinical rodent and human resistance training research to date supports that involved mechanisms include enhanced mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, an expansion in translational capacity through ribosome biogenesis, increased satellite cell abundance and myonuclear accretion, and postexercise elevations in muscle protein synthesis rates. However, several lines of past and emerging evidence suggest that additional mechanisms that feed into or are independent of these processes are also involved.

View Article and Find Full Text PDF

The myotendinous junction (MTJ) is a specialized domain of the multinucleated myofibre that is faced with the challenge of maintaining robust cell-matrix contact with the tendon under high mechanical stress and strain. Here, we profiled 24,124 nuclei in semitendinosus muscle-tendon samples from three healthy males by using single-nucleus RNA sequencing (snRNA-seq), alongside spatial transcriptomics, to gain insight into the genes characterizing this specialization in humans. We identified a cluster of MTJ myonuclei represented by 47 enriched transcripts, of which the presence of ABI3BP, ABLIM1, ADAMTSL1, BICD1, CPM, FHOD3, FRAS1 and FREM2 was confirmed at the MTJ at the protein level in immunofluorescence assays.

View Article and Find Full Text PDF

Myonuclei transcriptionally regulate muscle fibers during homeostasis and adaptation to exercise. Their subcellular location and quantity are important when characterizing phenotypes of myopathies, the effect of treatments, and understanding the roles of satellite cells in muscle adaptation and muscle "memory." Difficulties arise in identifying myonuclei due to their proximity to the sarcolemma and closely residing interstitial cell neighbors.

View Article and Find Full Text PDF

Skeletal muscle injury in aged rodents is characterized by an asynchronous infiltration of pro- and anti-inflammatory macrophage waves, leading to improper and incomplete regeneration. It is unclear whether this aberration also occurs in aged human muscle. In this study, we quantified the macrophage responses in a human model of muscle damage and regeneration induced by electrical stimulation in 7 young and 21 older adults.

View Article and Find Full Text PDF

The myotendinous junction (MTJ) is structurally specialized to transmit force. The highly folded muscle membrane at the MTJ increases the contact area between muscle and tendon and potentially the load tolerance of the MTJ. Muscles with a high content of type II fibers are more often subject to strain injury compared with muscles with type I fibers.

View Article and Find Full Text PDF

It is unclear whether resistance training-induced myofiber hypertrophy is affected by sex, and whether myonuclear addition occurs in relation to the myonuclear domain and can contribute to explaining a potential sex-specific hypertrophic response. This study investigated the effect of 8 wk of resistance training on myofiber hypertrophy and myonuclear addition in 12 males (28 ± 7 yr; mean ± SD) and 12 females (27 ± 7 yr). Muscle biopsies were collected from m.

View Article and Find Full Text PDF

Plasma volume (PV) changes in response to physical activity, possibly as a consequence of adrenergic activation. We estimated changes in PV in response to common exercise modalities; cycling and running as well as adrenaline infusion and control at rest. On separate days, forty circulatory healthy subjects [aged 60 years (range: 42-75)] with knee osteoarthritis underwent moderate-high intensity cycling, running, and intravenous adrenaline infusion to mimic the circulatory response to exercise.

View Article and Find Full Text PDF

Aging is accompanied by morphological and mechanical changes to the intramuscular connective tissue (IMCT) of skeletal muscles, but whether physical exercise can influence these changes is debated. We investigated the effects of aging and exercise with high or low resistance on composition and mechanical properties of the IMCT, including direct measurements on isolated IMCT which has rarely been reported. Middle-aged (11 months, n = 24) and old (22 months, n = 18) C57BL/6 mice completed either high (HR) or low (LR) resistance voluntary wheel running or were sedentary (SED) for 10 weeks.

View Article and Find Full Text PDF

Muscle fiber denervation is a major contributor to the decline in muscle mass and function during aging. Heavy resistance exercise is an effective tool for increasing muscle mass and strength, but whether it can rescue denervated muscle fibers remains unclear. Therefore, the purpose of this study was to investigate the potential of heavy resistance exercise to modify indices of denervation in healthy elderly individuals.

View Article and Find Full Text PDF

The myotendinous junction (MTJ), a specialized interface for force transmission between muscle and tendon, has a unique transcriptional activity and is highly susceptible to muscle strain injury. Eccentric exercise training is known to reduce this risk of injury, but knowledge of the influence of exercise on the MTJ at the molecular and cellular levels is limited. In this study, 30 subjects were randomized to a single bout of eccentric exercise 1 week prior to tissue sampling (exercised) or no exercise (control).

View Article and Find Full Text PDF

Muscle fibre denervation and declining numbers of muscle stem (satellite) cells are defining characteristics of ageing skeletal muscle. The aim of this study was to investigate the potential for lifelong recreational exercise to offset muscle fibre denervation and compromised satellite cell content and function, both at rest and under challenged conditions. Sixteen elderly lifelong recreational exercisers (LLEX) were studied alongside groups of age-matched sedentary (SED) and young subjects.

View Article and Find Full Text PDF

Proteomics analysis of skeletal muscle has recently progressed from whole muscle tissue to single myofibers. Here, we further focus on a specific myofiber domain crucial for force transmission from muscle to tendon, the myotendinous junction (MTJ). To overcome the anatomical constraints preventing the isolation of pure MTJs, we performed in-depth analysis of the MTJ by progressive removal of the muscle component in semitendinosus muscle-tendon samples.

View Article and Find Full Text PDF