Plast Reconstr Surg Glob Open
August 2022
Current outcome measures, including strength/range of motion testing, patient-reported outcomes (PROs), and motor skill testing, may provide inadequate granularity in reflecting functional upper extremity (UE) use after distal radius fracture (DRF) repair. Accelerometry analysis also has shortcomings, namely, an inability to differentiate functional versus nonfunctional movements. The objective of this study was to evaluate the accuracy of machine learning (ML) analyses in capturing UE functional movements based on accelerometry data for patients after DRF repair.
View Article and Find Full Text PDF