Publications by authors named "Abigail Barclay"

The presence of amyloid fibrils is a hallmark of several neurodegenerative diseases. Some amyloidogenic proteins, such as α-synuclein and amyloid β, interact with lipids, and this interaction can strongly favour the formation of amyloid fibrils. In particular the primary nucleation step, the formation of amyloid fibrils, has been shown to be accelerated by lipids.

View Article and Find Full Text PDF

Recent advances in protein expression protocols, sample handling, and experimental set up of small-angle scattering experiments have allowed users of the technique to structurally investigate biomolecules of growing complexity and structural disorder. Notable examples include intrinsically disordered proteins, multi-domain proteins and membrane proteins in suitable carrier systems. Here, we outline a modeling scheme for calculating the scattering profiles from such complex samples.

View Article and Find Full Text PDF

The combination of online size-exclusion chromatography and small-angle X-ray scattering (SEC-SAXS) is rapidly becoming a key technique for structural investigations of elaborate biophysical samples in solution. Here, a novel model-refinement strategy centred around the technique is outlined and its utility is demonstrated by analysing data series from several SEC-SAXS experiments on phospholipid bilayer nanodiscs. Using this method, a single model was globally refined against many frames from the same data series, thereby capturing the frame-to-frame tendencies of the irradiated sample.

View Article and Find Full Text PDF

Because of its small size (70 kilodalton) and large content of structural disorder (>50%), the human growth hormone receptor (hGHR) falls between the cracks of conventional high-resolution structural biology methods. Here, we study the structure of the full-length hGHR in nanodiscs with small-angle x-ray scattering (SAXS) as the foundation. We develop an approach that combines SAXS, x-ray diffraction, and NMR spectroscopy data obtained on individual domains and integrate these through molecular dynamics simulations to interpret SAXS data on the full-length hGHR in nanodiscs.

View Article and Find Full Text PDF